
NXtranslate

Peter F. Peterson

NXtranslate
by Peter F. Peterson

NXtranslate is an anything to NeXus converter. This is accomplished by using translation files
and a plugin style of architecture where NXtranslate can read from new formats as plugins
become available. This document describes the usage of NXtranslate by three types of indi-
viduals: the person using existing translation files to create NeXus files, the person creating
translation files, and the person writing new Retrievers. All of these concepts are discussed in
detail.

Table of Contents
1. Overview ..1

Command line arguments ..1
2. The Translation File..3

Overview ...3
Simple Translation..5
Translation from NeXus ..6

Anatomy of Links ...7
Strings for Translation ...7

NeXus ...7
Simple ASCII ...8
SNS Histogram..8
XML retriever ..9

3. Retriever Details ...11
The Simple ASCII Retriever as an Example ...12

iii

iv

Chapter 1. Overview

NXtranslate is designed to be the anything to NeXus converter. To this end it is built
in a modular fashion so the types of files that can be read from can vary between
different installations. The reason for this is to minimize the size of the executable. In
line with this modularity is the author’s desire to work with users of NXtranslate
to add abilities, clarify documentation, and fix bugs.

NXtranslate operates by parsing a translation file to create a NeXus file. The trans-
lation file contains the organization of the resulting NeXus file, data, and instructions
on other how to obtain data using retrievers. This book is organized into chapters
with an increasingly sophisticated user in mind. The chapter you are reading is a
general overview on how to use NXtranslate with an existing installation and exist-
ing translation files. Chapter 2 is aimed at writing translation files and chapter 3 will
discuss in more detail what retrievers are and how to write them.

Command line arguments
This section will explain the various command line arguments to NXtranslate . For
all of the examples here the name of the translation file is test.xml.

nxtranslate [--help] [-o outputfile] [--hdf4 | --hdf5] [-D
macro] {translationfile} [--append outputfile]

First to get the easy arguments out of the way. Typing just nxtranslate will give a
usage statement similar to what is above. nxtranslate --help will print the full help
message. Generally speaking this is not what you are interested in.

The minimum argument list for NXtranslate to do anything other than print the
usage message is to supply a translation file. The cannonical example is

bash$ nxtranslate test.xml

This tells NXtranslate to parse the file test.xml and produce a NeXus file called
test.nxs using the default base format (base format is discussed below). To change
the name of the output file use the "-o" switch.

bash$ nxtranslate test.xml -o my_file.nxs

The only difference with the previous example is that the resulting NeXus file is
my_file.nxs.

The switches "--hdf4" and "--hdf5" are mutually exclusive and take no arguments.
These are used to select the base format for the output file. NeXus is actually written
using the Hierarchical Data Format (HDF) which is produced by the National Center
for Supercomputer Applications (NCSA). There are two (incompatible) versions of
HDF that have widespread use that are commonly referred to as HDF4 and HDF5.
Part of the purpose of the NeXus API is to hide the difference between the different
bases. In this spirit NXtranslate only exposes the bases with these switches. To create
two files with the same structure and diffent bases is easy.

bash$ nxtranslate --hdf4 test.xml -o my_hdf4.nxs
bash$ nxtranslate --hdf5 test.xml -o my_hdf5.nxs

The last command line argument is the "-D" switch. This switch allows for substi-
tuting strings in the the translation file for the NXS:mime_type , NXS:source , and
NXS:location attributes in the translation file. To get a better understanding of what
this means see Chapter 2. For now it is enough to show an example.

1

Chapter 1. Overview

bash$ nxtranslate test.xml -DFILE1=old_nexus.nxs

This example assumes that there is a macro FILE1 in the translation file.
NXtranslate will convert the string FILE1 into old_nexus.nxs before creating the
resulting NeXus file. This allows for a script to convert an entire directory of files to
look like (using python)

listing=glob.glob("*.nxs")
for file in listing:

os.system("nxtranslate converter.xml -DFILE1=%s -o new_%s" % (file,file))

This bit of code (plus the proper import statements) would use the translation file
converter.xml to translate all *.nxs in the current working directory.

2

Chapter 2. The Translation File

The file produced by NXtranslate is entirely determined by the contents of the trans-
lation file. This chapter discusses the format of a translation file as well as listing
"location strings" for the external formats.

Overview
Translation files are written in xml and read using an xml parser. For this reason they
must be a valid xml file. 1 This means that the following rules must be adhered to

• Every opening tag must have a corresponding closing tag at the same
level. This means that <entry><data></data></entry> is allowed while
<entry><data></entry></data> and <entry><data></data> are not.

• Tags and attribute names are case sensitive. Therefore <entry> and <Entry> are
distinct tags. While this can lead to confusion when writing a translation file it is
easily avoided in practice.

• Attribute values must be inside single (’) or double (") quotes.

• Tags and attribute names cannot start with a number or special character. Another
way of saying this is that the name must start with a letter.

• Certain characters will break the parsing of the xml. The characters, and how to
create them are <(<), >(>), &(&), "("), and '(&apos).

• Empty tags, <data></data>, can be replaced with a single tag, <data/>. This con-
venience will make more sense during the discussion of translation files when
specifying information outside of the file.

There are some other rules to note about the translation file. It is not simply a XML
file, there are additional constraints. However, the translation file is not directly vali-
dated to follow these constraints, but failing to follow them will result in the program
exiting early without creating a NeXus file. Also, NXtranslate is intended to be used
to write any file readable by the NeXus API, so the translation file is not validated
against definition files. 4 First some definitions used througout this document.

Translation file definitions

napi

An abbreviation for the NeXus Abstract Program Interface.

node

A point in the hierarchy, it can either contain other nodes (be a parent with chil-
dren) or not (a leaf node). Any pair of opening an closing tags represents a single
node.

group

A node that contains other nodes.

field

A node that does not contain other nodes (a leaf node). In other places in NeXus
this is sometimes refered to as a "data" or a "SDS".

retriever

An object whose job is to retrieve information from a source external to the
translation file. Which retriever is created is determined by the value of

3

Chapter 2. The Translation File

NXS:mime_type . The retriever is initialized using the value of NXS:source .
Information is produced by the retriever using the NXS:location.

special attribute

An attribute that is interpreted by NXtranslate as a command to deal with
external information. The special attributes are NXS:mime_type , NXS:source
, NXS:location , and target .

NXS:mime_type

A keyword that denotes what library to use to retrieve information from an ex-
ternal source. It can be a valid mime type.

NXS:source

A string denoting what a retriever should use to initialize itself. This is generally
a file on the local system for the retriever to open.

NXS:location

A string passed to the retriever for it to generate data from. For example, when
using the NeXus retriever this is a path to a particular node in the file which will
be written out to the resulting NeXus file.

NAPIlink

This denotes a node that is a link to another node in the file. It must have a
target attribute. All other attributes will be ignored

target

The attribute denoting what a NAPIlink node should be linked to. The syntax
for describing location is the same as for the NeXus retriever. If this attribute
appears in a node other than NAPIlink it will be treated as a normal attribute.

primative type

Any of the following types (ignoring bit-length): NX_UINT (unsigned integer),
NX_INT (signed integer), NX_FLOAT (floating point number), NX_CHAR (character),
NX_BOOLEAN (boolean, or true/false), NX_BINARY (binary value). At the moment
NX_BOOLEAN and NX_BINARY are not supported by NXtranslate and the NeXus
API supports only one dimension arrays of NX_CHAR.

Now that the definitions have been presented the other constraints of a translation
file can be explained.

• The root node in a file will be <NXroot>. There will be nothing before or after it, and
only one of them. The NXroot can be used to set global values for NXS:mime_type
and NXS:source .

• Only groups can exist directly inside the root. This is a constraint of the NeXus
API.

• Every node (except the NXroot and NAPIlink) needs a name and type. If the node
has a NXS:location then the type can be omitted since the retriever will provide
it.

• Groups cannot have any attribute other than the special ones. Fields can have any
attribute. This reflects a restriction in the NeXus API and does not constrain the
contents of resulting NeXus files in any way.

• Groups cannot have any data in them. In other words things similar to <data
type="NXdata">1 2 3 4</data> are incorrect.

4

Chapter 2. The Translation File

• To specify the dimensions of a field, use square brackets [] affter the type.
A single precision floating point array with five elements would have
type="NX_FLOAT32[5]". If the field has only one element, or is a character array,
the dimensions can be left off. For character arrays, the dimensions are ignored.

• To specify the type of a attribute denote the primative type separated from the
value using square brackets. For numeric types only scalars are allowed. If no type
is specified it is assumed to be a character array (length is determined automati-
cally).

Simple Translation
While NXtranslate is the anything to NeXus translator, it is possible to have every-
thing specfied in the translation file. Example 2-1 shows a translation file where no
information will be taken from any other file.

Example 2-1. Simple translation file test_simple.xml

<NXroot>
<NXentry name="entry1">
<NXnote name="note">
<author type="NX_CHAR">George User</author>

5 <type type="NX_CHAR">text/plain</type>
<data type="NX_CHAR">The data is a simple parabola, f(x)=x^2
</data>

</NXnote>
<NXdata name="parabola_1D">

10 <x type="NX_INT8[11]" axis="NX_INT:1" units="number">
0 1 2 3 4 5 6 7 8 9 10

</x>
<f_x type="NX_INT16[11]" signal="NX_INT:1" units="number">

0 1 4 9 16 25 36 49 64 81 100
15 </f_x>

</NXdata>
</NXentry>
<NXentry name="entry2">
<NXnote name="note">

20 <author type="NX_CHAR">George User</author>
<type type="NX_CHAR">text/plain</type>
<data type="NX_CHAR">The data is a two dimensional parabola,

f(x,y)=x^2+y^2</data>
</NXnote>

25 <NXdata name="parabola_2D">
<x type="NX_FLOAT32[4]" axis="NX_INT:1" units="number">

1.0 4.7 2.3 1.6
</x>
<y type="NX_FLOAT32[3]" axis="NX_INT:2" units="number">

30 3.3 6.2 9.2
</y>
<f_x_y type="NX_FLOAT64[4,3]" signal="NX_INT:1" axes="x,y" units="number">

11.89 32.98 16.18
13.45 39.44 60.53

35 43.73 41.00 85.64
106.73 89.93 87.20

</f_x_y>
</NXdata>

</NXentry>
40 </NXroot>

This example follows all of the rules laid out in the previous section and serves to
introduce several of the features of the translation file. First a style note though, in

5

Chapter 2. The Translation File

XML files there is a concept of "ignorable whitespace". These are carriage returns
(\n), line feeds (\r), tabs (\t), and spaces. These are ignored (as suggested by the
term "ignorable whitespace") and are present to aid those looking at the raw XML to
see the node hierarchy.

The main purpose of Example 2-1 is to show how to specify information in a trans-
lation file. Line 4 demonstrates the method for strings. Here the name is author and
the type is NX_CHAR. The length of the character array is determined from the ac-
tual string supplied rather than what is specified in the type attribute. The value is
created by reading in the supplied string, converting tabs, carriage returns, and line
feeds into a single space, turning any sections of multiple whitespace into a single
space, then chopping off any whitespace at both ends of the string. This allows the
person writting the file to add whitespace in strings as needed to make the raw XML
easier to read, without changing what is written into the final NeXus file.

Next to look at is how arrays of numbers are specified. Lines 24-27 show both one
and two dimensional arrays. The dimension of the array is specified with the type as
discussed above. “The thing to notice here is that arrays of numbers are specified as
comma delimited lists. The brackets in the list of values are "syntatic sugar". When
the values are read in NXtranslate converts them into commas then converts mul-
tiple adjacent commas into a single comma. The purpose of this is so translation file
authors can more easily see each dimension of the array that they wrote. The brackets
can also be removed altogether as seen in line 24.”

Translation from NeXus
Next is to show how to use NXtranslate to bring in information from external sources.
Example 2-2 demonstrates various features of importing information from external
sources, including modifying it before writing.

Example 2-2. Translation from NeXus file test_nexus.xml

<NXroot NXS:source="test_simple.nxs" NXS:mime_type="application/x-NeXus">
<entry_1D NXS:location="/entry1"/>
<entry_2D type="NXentry">
<note NXS:location="/entry1/note">

5 <description type="NX_CHAR">The functional form of the data
</description>

</note>
<parabola_2D type="NXdata">
<x axis="2" NXS:location="/entry2/parabola_2D/x"/>

10 <y axis="1" NXS:location="/entry2/parabola_2D/y"/>
<f_x_y type="NX_FLOAT64[3,4]" axes=""

NXS:location="/entry2/parabola_2D/f_x_y"/>
</parabola_2D>

</entry_2D>
15 </NXroot>

As suggested earlier the root node (line 1) has defined a NXS:source and
NXS:mime_type to use for creating a retriever. Line 2 demonstrates that entire entries
can be copied from one file to the next and that the name of a node can be changed.
In this case it is from entry1 to entry_1D. Lines 4-7 show how to copy over an
entire group and add a new field to it. For finer control of what is added and have
the ability to change attributes look at lines 9-12. Line 11 shows how to change
the dimensions of the field by using the type attribute. Please note that this will
not work for character arrays and the total number of array items must remain
constant. Also, the type itself cannot be changed (single precision float to double
precision float, etc.). Since the dimensions of the f_x_y array change it makes sense
to change the axes for plotting. This is done in both line 9 and 10 by specifying the
attribute and its new value. To add another attribute just specify it similarly. Line 11

6

Chapter 2. The Translation File

demonstrates erasing the axes attribute. Specify the attribute with an empty string
as the value.

These two examples have shown the way to set up a translation file. You can
import information from multiple files by declaring another NXS:source and
NXS:mime_type . There are a couple of things to know about these as well. The
default NXS:mime_type is "application/x-NeXus" so it does not need to be
specified. For each NXS:source , whatever NXS:mime_type was defined in the
parent node will be used for the current NXS:source . Example 2-3 shows what, in
principle, could be done with NXtranslate as more retrievers get written.5

Example 2-3. A contrived example

<NXroot>
<entry1 NXS:source="test_simple.nxs" NXS:location="/entry1">
<user type="NXuser" NXS:source="127.0.0.1" NXS:mime_type="mySQL">
<name type="NX_CHAR">George User</name>

5 <address NXS:location="query(George User):address"/>
<email NXS:location="query(George User):email"/>
<phone NXS:location="query(George User):phone"/>
<picture NXS:source="GeorgeUser.jpg" NXS:mime_type="img/jpeg" NXS:location="all"/>

</user>
10 </entry1>

<entry2 NXS:source="test_nexus.nxs" NXS:location="/entry_2D"/>
</NXroot>

Anatomy of Links
The two nodes involved in a link are the source and link. The source is the original
version of the information, the link is the copy. There is no way to decipher which is
the original and which is the copy without direct comparison of ids using the NeXus
api. Links can be either to a group or field. Links to attributes are not supported by
the napi . A link to a group and field are both shown in Example 2-4. The first link is
to a group whose name was group1, while the second link is to a field array1.

Example 2-4. Two links

<NAPIlink target="/entry/group1"/>
<NAPIlink target="/entry/group1/array1"/>

Strings for Translation
The previous section discussed how to write a translation file and several of its fea-
tures. This section will explain in more detail the strings available for use in a trans-
lation file. In principle this section is incomplete because there may exist retrievers
that the authors have not been informed of so consider this list incomplete. Also, by
nature, the retrievers are quite decouple so the location strings for each retriever can
be significantly different from the others.

NeXus
As seen earlier in this chapter the NXS:mime_type for NeXus files is
application/x-NeXus. Similarly the NXS:locationstrings are as simple as
possible. NeXus files are organized hierarchically similar to the translation file. A
good analogy is to compare it to a file system where the groups are directories and
the fields are files. Using this analogy the NXS:location strings are absolute paths
to the directory or file to be copied. Since there examples of NeXus location strings

7

Chapter 2. The Translation File

in Example 2-2 and Example 2-3 there is only one other thing to mention, the path
separator is a forward slash, "/".

Simple ASCII
The NXS:mime_type for the simple ASCII retriever is text/plain. The functionality
of the simple ASCII retriever is limited. This is to emphasize the methodology for
building retrievers, rather than build a general purpose one. All of the location strings
are integers defining the line number to use. The first line of the file is zero.

SNS Histogram
The NXS:mime_type for the SNS histogram retriever is
application/x-SNS-histogram.

The NXS:location is of the general form

[...,dim2,dim1][...,dimY,dimX]#{tag_name_1|operator_1}keyword_1{tag_name_2|
operator2}keyword_2...

Notice that the NXS:location is divided into two parts, declaration and definition,
separated by #. The declaration describes the dimension of the retrieved data. The
definition describes which information the data consists of. Both of these will be de-
scribed in greated detail below.

The declaration part, [...,dim2,dim1][...,dimY,dimX] surrounded by square
brackets, contains between the first brackets the size of each dimension of the array
to be returned, separated by commas, and between the second set of brackets, the
dimensions of the array to read from. The values are specified as positive integers.
The current version of the retriever returns an array of the same size as the initial
array, no matter the dimensions given between the first set of brackets.

The definition part, {tag_name_1|operator_1}keyword_1{tag_name_2|operator2}...,
is where selecting the data to be transfered from the SNS histogram file is described.
Each part of the definition consists of a tag_name and operator separated by a
vertical slash "|". Multiple definitions can exist in a single NXS:location separated
by keywords. If the definition is missing, then all of the available data will be
retrieved.

The possible values for the tag_name are

pixelID

Select using unique pixel identifiers. Applicable for all detectors.

pixelX

Select using column numbers. Applicable for all area detectors

pixelY

Select using row numbers. Applicable for all area detectors

Tbin

Select using time channels. Applicable for all detectors

The operator can be of one of two forms

8

Chapter 2. The Translation File

• loop(start,end,increment) is used to specify a series of identifiers that runs
inclusively from start to end in steps of increment.

• List of identifiers. The identifiers specify which data to include. The identifiers
must be separated by commas.

The keyword is used to link various declarations together into unions and intersec-
tions. Keywords are entirely optional. Keywords that work on two definitions are left
associative.

!

The logical "not" operator. This negates the definition following it. Must be
placed just in front of the curly braces it is associated with.

()

Grouping operation. This can be used to clarify what order multiple keywords
are applied. No associative parentheses are allowed within the curly braces.

AND

The logical "and" operator. This generates the intersection of two definitions.
This parameter is case sensitive.

OR

The logical "or" operator. This generates the union of two definitions. This pa-
rameter is case sensitive.

Examples

[150,256,167][304,256,167]#{pixelID|loop(1,38400,1)}

This retrieves the first 38400 pixel identifiers and put the data into a 150x256x167
array where the 167 dimension changes the fastest. In this example, there are 167
time channels, 256 columns, and 150 rows. The data are coming from a binary
file where the data are stored as a 304x256x167 flat array

[50,256,100][304,256,167]#{pixelID|loop(1,12800,1)}AND{Tbin|loop(1,100,1)}

This retrieves the union of the first 12800 pixel identifiers with the first 100 time
channels then places the data into a 50x256x100 array. One must keep in mind
that if the array declared is of a different size than the data defined, an error will
be generated.

[7,167][304,256,167]#{pixelX|45,53,60,61,62,34500,34501}

This retrieves a series of columns.

XML retriever
The NXS:mime_type for the XML retriever is text/xml. The XML retriever is built on
top of libxml2’s document object model (DOM) parser. Because of this the entire file
for information to be retrived from is loaded into memory as a character arrays. The
DOM API was chosen to allow for jumping around the source file without needed to

9

Chapter 2. The Translation File

parse its contents multiple times. The location string will be formatted according to
the following rules:

• The location string for a field will look like a (unix) path. Each level of the hierarchy
is separated by a forward slash, "/".

• To specify the type the value is preceeded using a name
separated using a colon, ":". The allowed names are
"INT8,INT16,INT32,UINT8,UINT16,UINT32,FLOAT32,FLOAT64". If no name
is specified it is (implicitly) a string. Therefore to get "the_answer" as a double
precision float the location is "FLOAT64:/numbers/the_answer".

• In the case where the field has a "type" attribute with the value being one of the
types above that will be used rather than as a character array. Specifying the type
in the location will override what is in the source file.

• Arrays can be specified as part of the type as either an attribute in the XML file
or in the location string. To get a six element integer array use the location
"/numbers/array" which points to a whitespace delimited list. Multiple
dimensions are specified by using a comma delimited list in the square brackets
(i.e. "INT16[3,2]:/numbers/array")

• To get an attribute specify it at the end of a path separated by a hash
symbol, "#". Therefore to get attr2 as a single precision float the location is
"FLOAT32:/numbers#attr2".

This methodolgy does not allow for automatically detecting the type of an imported
attribute (it will be read as a string), or differentiating two fields at the same level
with the same tag name.

Notes
1. There are many places to find more information about XML

2. http://www.w3.org/XML/
is the definitive standard while

3. http://studio.tellme.com/general/xmlprimer.html
has a one page overview of what XML is.

2. http://www.w3.org/XML/

3. http://studio.tellme.com/general/xmlprimer.html

4. This decision was made on the basis of performance since it was determined that
most of the time a "standard" translation file will be used to convert a large num-
ber of files.

5. While retrievers that import information from mySQL and jpeg images would be
nice, they do not currently exist.

10

Chapter 3. Retriever Details

Example 3-1. listing of retriever.h

class Retriever{
typedef Ptr<Retriever> RetrieverPtr;

public:
/**
* The factory will call the constructor with a string. The string
* specifies where to locate the data (e.g. a filename), but
* interpreting the string is left up to the implementing code.
*/
//Retriever(const std::string &);

/**
* The destructor must be virtual to make sure the right one is
* called in the end.
*/
virtual ~Retriever()=0;

/**
* This is the method for retrieving data from a file. The whole
* tree will be written to the new file immediately after being
* called. Interpreting the string is left up to the implementing
* code.
*/
virtual void getData(const std::string &, tree<Node> &)=0;

/**
* This method is to be used for debugging purposes only. While the
* string can be anything, most useful is "[mime_type] source".
*/
virtual std::string toString() const=0;

/**
* Factory method to create new retrievers.
*/

static RetrieverPtr getInstance(const std::string &, const std::string &);
};

Example 3-1 is the listing of the Retriever abstract base class. In addition to these
methods there are a couple of assumptions made about classes that implement this
interface

Other constraints

1. The copy constructor and assignment operator will not be used. It is suggested
that they are made private methods.

2. There is a static const string called MIME_TYPE which will be used to deter-
mine if that particular Retriever should be created by the factory. Care must be
made to select a unique MIME_TYPE to prevent name clashing.

3. The destructor will properly deallocate all resources allocated in the constru-
tor. Specifically, if a file is opened in the constructor, it should be closed in the
destructor.

4. If anything goes wrong during the course of the Retriever’s operation, an
std::exception will be thrown.

11

Chapter 3. Retriever Details

The rest of this chapter describes how to create the body of code, and header, for an
example implementation.

The Simple ASCII Retriever as an Example
The simplest retriever is the the one for the NXS:mime_typetext/plain. Because of
this it makes a good example of how to create your own retriever. The files are located
in the text_plain subdirectory as retriever.h and retriever.cpp.

Example 3-2. listing of text_plain/retriever.h

#include "../retriever.h"
#include <fstream>

// this is not intended to be inherited from
class TextPlainRetriever: public Retriever{
public:
TextPlainRetriever(const std::string &);
~TextPlainRetriever();
void getData(const std::string &, tree<Node> &);
std::string toString() const;
static const std::string MIME_TYPE;

private:
TextPlainRetriever(const TextPlainRetriever&);
TextPlainRetriever& operator=(const TextPlainRetriever&);
std::string source;
int current_line;
std::ifstream infile;

};

Note that none of the methods are virtual, so this is not intended to be derived from
directly. That being said, you may want to copy the header and code for your own
retriever as a basis of what works. In this example the copy constructor and assign-
ment operator are made private as specified in Other constraints 1. The private data
is a filehandle and the name of the file that is open for reading. The file name and
NXS:mime_type are used in the toString to identify it uniquely for debugging as
seen in Example 3-3.

Example 3-3. Listing of simple ascii toString

string TextPlainRetriever::toString() const{
return "["+MIME_TYPE+"] "+source;

}

The first non-trivial function to write is the constructor. The constructor is not very
complicated or insightful. The source and accounting for where in the file the read-
ing is (current_line) are initialized in line 1. Line 3 opens the file, and line 6 con-
firms that it was opened without error. An exception is thrown if there is a problem
to follows Other constraints 4. The constructor is very brief because C++ fstream
library provides the ifstream object that does most of the work.

Example 3-4. Listing of the simple ascii constructor

TextPlainRetriever::TextPlainRetriever(const string &str): source(str),current_line(0){
// open the file
infile.open(source.c_str());

5 // check that open was successful
if(!infile.is_open())

12

Chapter 3. Retriever Details

throw invalid_argument("Could not open file: "+source);
}

The destructor for the Retriever in Example 3-5 is just as simple simpler since all it
has to do is close the file. There were no calls in the constructor (or anywhere else) to
new or malloc so the constructor does not need to call delete or free.

Example 3-5. Listing of the simple ascii destructor

TextPlainRetriever::~TextPlainRetriever(){
// close the file
if(infile)
infile.close();

}

Next is the getData function which is simple as well. All that getData does is grab
a line of text from the file and create a node. Lines 3-4 are error checking, and line 7
converts the location string into an integer. Line 10 moves to the appropriate place
in the file while line 12 gets the string on that line. Since every getData must put a
node into the provided tree, line 15 creates a node to be filled with data. Lines 18-20
update the generic node with the string read in from the source file. Finally line 21
adds the single node to the supplied tree.

Example 3-6. Listing of the simple ascii getData

void TextPlainRetriever::getData(const string &location, tree<Node> &tr){
// check that the argument is not an empty string
if(location.size()<=0)
throw invalid_argument("cannot parse empty string");

5
// check that the argument is an integer
int line_num=string_util::str_to_int(location);

// set stream to the line before
10 skip_to_line(infile,current_line,line_num);

// read the line and print it to the console
string text=read_line(infile);

// create an empty node
15 Node node("empty","empty");

// put the data in the node
vector<int> dims;
dims.push_back(text.size());

20 update_node_from_string(node,text,dims,Node::CHAR);
tr.insert(tr.begin(),node);

}

Example 3-6 is brief because it leverages existing functionality. The ifstream
objects does all of the work of getting information out of a file. skip_to_line and
read_line are very short functions that scan to a point in an ascii file and read
from a point to the next end-of-line character, respectively. Finally, the function
update_node_from_string existed in NXtranslatealready to assist node creation
while reading the translation file. The interested reader can look at the source of
node_util.cpp and text_plain/retriever.cpp to see the body of the functions.

13

Chapter 3. Retriever Details

14

	NXtranslate
	Table of Contents
	Chapter 1. Overview
	Command line arguments

	Chapter 2. The Translation File
	Overview
	Translation file definitions

	Simple Translation
	Translation from NeXus
	Anatomy of Links

	Strings for Translation
	NeXus
	Simple ASCII
	SNS Histogram
	Examples

	XML retriever

	Chapter 3. Retriever Details
	The Simple ASCII Retriever as an Example

