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The paper presents solution of quantum problem of neutron propagation in the magnetic field
with multipole field expansion. Rigorous solution of the Pauli equation for neutron reveals existence
of two solutions, finite and infinite, for any miltipole configuration. As an example, we present
detailed study of neutron motion in quadrupole and sextupole. Our predictions agree with the
results of Stern-Gerlach experiment for neutrons. To verify existence of finite and infinite motion,
we discuss an experiment which could be performed in the Budker Insitute of Nuclear Physics using
existing equipment. We conclude with the proposal of neutron-electron intersecting ring (neutron-
electron “collider”), which, if realized, would allow to accomplish a number of important experiments
devoting to study neutron internal structure.

Keywords: neutron, spin, magnetic moment, Stern-Gerlach, magnetic multipole, storage ring

I. INTRODUCTION

Due to absence of an electrical charge, the only way to
control neutron motion is using the interaction of mag-
netic moment and the magnetic field with high gradient.
Feasibility of this method was demonstrated in famous
Stern-Gerlach experiment, providing the first direct ex-
perimental evidence of spin existence [1, 2]. The effect of
beam splitting, which we call Stern-Gerlach effect (SGE),
with neutrons was reported in [3, 4] in the experimental
setup similar to the original Stern-Gerlach experiment.

In many textbooks [5–8] SGE is explained using mag-
netic field Bx(x) and interaction operator

H = −µσ ·B = −µσxBx(x), (1)

where σ are Pauli matrices, µ is a magnetic moment of
spin-1/2 particle. Since the spin projection on axis x is
±1/2, then the corresponding force is

Fx = ±µ∂Bx(x)/∂x. (2)

As a result, the beam of unpolarized particles splits into
two with distinct spin projections. In particular, mag-
netic field is chosen as Bx(x) = B0 + Gx (shifted skew
quadrupole), where B0 and G are constants. However,
such field violates Maxwell equation divB = 0, and it is
necessary to add a component By(y) = −Gy, demand-
ing more accurate quantum analysis of SGE, than naive
explanation given in the textbooks. However, in spite of
numerous attempts to solve the problem of SGE correctly
[5–9], none has found a correct solution.

Note that the problem possesses an internal symmetry,
which becomes obvious with replacement of the variable
x with x′ = x + B0/G, giving B(x′) = Gx′ and provid-
ing a symmetry between coordinates x′ and y. Similar
symmetry exists for any 2(n+ 1) pole magnet.
In the present paper, we have solved a quantum prob-

lem of neutron motion in 2(n+ 1) pole magnet, yielding
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a correct transition from quantum description of neutron
motion in the magnetic field to classical one.
Using our approach for the case n = 1, we have ex-

plained the experimental results of Stern-Gerlach experi-
ment for neutrons [4]. We have also revealed correct oper-
ating principles of the magnetic trap and the storage ring
for ultracold neutrons [9–11]. A proposal of the strong
focusing synchrotron for neutrons was suggested in [12].
However, it is based on incorrect explanation of SGE be-
cause, as we explained above, the authors used only one
magnetic field component thus violating Maxwell equa-
tion.

II. PAULI EQUATION FOR NEUTRON IN
2(n+ 1) POLE MAGNET

Let’s start with solving the stationary Pauli equation
(extension of the Schrödinger equation for spin-1/2 par-
ticles in the external electromagnetic field) for neutron in
2(n+1) pole magnet. The numbers n = 1 and n = 2 de-
scribe quadrupole and sextupole, respectively. Magnetic
field satisfies Maxwell equations divB = 0 and rotB = 0,
while, neglecting the fringe fields, the scalar potential Φ
(B = ∇Φ) satisfies 2-d Laplace equation. Cartesian com-
ponents of the field in harmonic expansion are

Bx = Gnρ
n sin(nφ), By = Gnρ

n cos(nφ), Bz = 0, (3)

where ρ =
√
x2 + y2, {ρ, φ, z} are cylindrical coordi-

nates, and Gn is a constant. The corresponding station-
ary Pauli equation reads

EΨ(r) = HΨ(r),

H =
p2

2M
− µσ ·B

=
p2

2M
− µGnρ

n[sin(nφ)σx + cos(nφ)σx],

(4)

where M is the neutron mass with Mc2 = 939.565 MeV,
c is a speed of light, µ = −1.913µN = −6.03×10−8eV/T
is the neutron magnetic moment, µN = 3.152×10−8eV/T

ar
X

iv
:2

41
2.

02
11

5v
1 

 [
he

p-
ex

] 
 3

 D
ec

 2
02

4

mailto:A.V.Bogomyagkov@inp.nsk.su


2

is the nuclear magneton, p = −iℏ∇∇∇ is the momentum
operator.

At first, let’s show equivalence of the problem of neu-
tron motion in quadrupole lens and in skew quadrupole
(used in Stern-Gerlach experiment). We transform the
wave function according to Ψ(r) = exp(−iπsz/2)Ψ1(r),
which rotates spin at angle π/2 around z axis (the spin
operator is s = σ/2). Observing that

exp(iπσz/4)σx exp(−iπσz/4) = −σy,
exp(iπσz/4)σy exp(−iπσz/4) = σx,

(5)

we find that Ψ1(r) satisfies equation (4) with magnetic
field Bx = G1x, By = −G1y, Bz = 0. Thus, magnetic
field in Stern-Gerlach experiment corresponds to the field
of the shifted and rotated quadrupole.

Since magnetic field B in (4) is independent of z, we
write solution Ψ(r) as

Ψ(r) = eikzψ(x, y),

ψ(x, y) = f+(x, y)Φ+ + f−(x, y)Φ−,

Φ+ =

(
1
0

)
, Φ− =

(
0
1

)
,

(6)

where the spin quantization axis is the axis z. For func-
tions f± we obtain a system of equations

εf+(x, y) =
p2
⊥

2M
f+(x, y) + iµGn ρ

n einφ f−(x, y),

εf−(x, y) =
p2
⊥

2M
f−(x, y)− iµGn ρ

n e−inφ f+(x, y),

(7)

where ε = E−ℏ2k2/2M , p2
⊥ = p2x+p

2
y. Using expression

p2
⊥ = −ℏ2

[
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂ϕ2

]
and depicting f± as

f+(x, y) = ei(m+n/2)φ g+(ρ),

f−(x, y) = ei(m−n/2)φ g−(ρ),
(8)

where m is integer, we obtain

εg+(ρ) =
ℏ2

2M

[
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

(m+ n/2)2

ρ2

]
g+(ρ)

+ iµGnρ
ng−(ρ),

εg−(ρ) =
ℏ2

2M

[
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

(m− n/2)2

ρ2

]
g−(ρ)

− iµGnρ
ng+(ρ).

(9)

Additional transformation

g+(ρ) =
χ+(ρ)√

ρ
, g−(ρ) =

χ−(ρ)√
ρ
, χ±(0) = 0 (10)

will further simplify equations. For convenience, we in-
troduce dimensionless parameters

E =
ε

ε0
and ϱ =

ρ

a0
,

a0 =

(
ℏ2

M |µ|Gn

)1/(n+2)

, ε0 = |µ|Gna
n
0 .

(11)

Noticing, that µ = −|µ| we obtain

Eχ+(ϱ) =
1

2

[
− ∂2

∂ϱ2
+

(m+ n/2)2 − 1/4

ϱ2

]
χ+(ϱ)

− iϱnχ−(ϱ),

Eχ−(ϱ) =
1

2

[
− ∂2

∂ϱ2
+

(m− n/2)2 − 1/4

ϱ2

]
χ−(ρ)

+ iϱnχ+(ϱ).

(12)

Feasible quadrupole gradient G1 = 100 T/m gives values

a0 = 2 · 10−4 cm, ε0 = µG1a0 = 10−11 eV. (13)

Since a0 and ε0 are too small, we need to care about
solutions with ε ≫ ε0 (E ≫ 1), ρ ≫ a0 (ϱ ≫ 1) and
|m| ≫ 1. With |m| ≫ 1 we can change ((m±n/2)2−1/4)
to m2 in (12), i.e. changing equations (12) to

Eχ+(ϱ) =
1

2

[
− ∂2

∂ϱ2
+
m2

ϱ2

]
χ+(ϱ)− iϱnχ−(ϱ),

Eχ−(ϱ) =
1

2

[
− ∂2

∂ϱ2
+
m2

ϱ2

]
χ−(ρ) + iϱnχ+(ϱ).

(14)

This system possesses two solutions. For the first solution
χ−(ϱ) = iχ+(ϱ) = iFm(ϱ) and

EFm(ϱ) = −1

2

∂2

∂ϱ2
Fm(ϱ) +

(
m2

2ϱ2
+ ϱn

)
Fm(ϱ), (15)

which describes finite motion in the potential

U+(ϱ) =
m2

2ϱ2
+ ϱn. (16)

For the second solution χ−(ϱ) = −iχ+(ϱ) = −iF̃m(ϱ)
and

EF̃m(ϱ) = −1

2

∂2

∂ϱ2
F̃m(ϱ) +

(
m2

2ϱ2
− ϱn

)
F̃m(ϱ), (17)

which describes infinite motion in the potential

U−(ϱ) =
m2

2ϱ2
− ϱn. (18)

For the finite motion minimum of the potential U+(ϱ)
is reached at and is equal to

ϱ∗ =

(
m2

n

)1/(n+2)

,

E∗ = U+(ϱ
∗) =

(n
2
+ 1
)(m2

n

)n/(n+2)

.

(19)
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Assuming E ≫ E∗, we find the turning points (solutions
of U+(ϱ) = E)

ϱ1 =
|m|√
2E

≪ ϱ∗ and ϱ2 = E1/n ≫ ϱ∗, (20)

where we assumed that |m| ≪ E(n+2)/2n.
At last, we find the wave function for the finite motion

in {xy} plane

ψ(x, y) = Fm

(
ρ

a0

)
eimφ

√
ρ

(
einφ/2

ie−inφ/2

)
, (21)

where function Fm(ρ/a0) depends on energy ε. Let’s
compare (21) with spinor

Ξ = eiα
(
cos(θ/2)e−iϕ/2

sin(θ/2)eiϕ/2

)
, (22)

corresponding to wave functions of spin-1/2 particle, di-
rected along vector ζ, and α is an arbitrary phase. This
vector is described by polar angles θ and ϕ. We observe
that

ϕ =
π

2
− nφ, θ =

π

2
. (23)

Now, taking a scalar product ofB (3) and ζ = {cos(π/2−
nφ), sin(π/2− nφ), 0} we obtain

B · ζ = Gnρ
n = |B| |ζ| . (24)

For the infinite motion, the wave function is

ψ̃(x, y) = F̃m

(
ρ

a0

)
eimφ

√
ρ

(
einφ/2

−ie−inφ/2

)
. (25)

Comparison of (25) with spinor (22) gives

ϕ = −π
2
− nφ, θ =

π

2
, (26)

so that the scalar product of B and ζ = {cos(−π/2 −
nφ), sin(−π/2− nφ), 0} is

B · ζ = −Gnρ
n = − |B| |ζ| . (27)

Notice that expressions in (23) and (26) are indepen-
dent of quantum number m and energy ε; vector ζ for fi-
nite motion is parallel (magnetic moment is anti-parallel)
to magnetic field B(r) and anti-parallel B(r) for infinite
motion (magnetic moment is parallel).

Very large quantum numbers (m) and independence
of spin direction on energy and m allow transition from
quantum description of the problem to classical. At first
we need to construct a wave packet, a superposition of
wave functions (21) or (25) with different values of ε and
m, such that their spreads ∆ε≪ ⟨ε⟩ and ∆m≪ ⟨m⟩ are
far less than the average values. Motion of the packet
center corresponds to trajectory in the classical physics.

The trajectory in the case of finite motion is described
by the classical Hamiltonian

Hf
cl =

p2

2M
+ |µ| |B(r)| , (28)

and in the case of infinite motion

Hinf
cl =

p2

2M
− |µ| |B(r)| , (29)

where we the relation Gnρ
n = |B(r)| is used. We em-

phasize that Eqs. (28) and (29) are valid not only for
2(n+1) pole magnet, but also for macroscopic magnetic
fields of any configurations. Validity of such treatment
for macroscopic fields is justified by infinitesimal varia-
tion of the magnetic field at the distance comparable with
de Broglie wavelength. Thus, on each trajectory (finite
and infinite) spin follows direction of the magnetic field.
On the other hand, there is a well known equation for
spin precession in a magnetic field

Ṡ =
2µ

ℏ
[S×B] , (30)

where direction of S is arbitrary with respect to B. Reso-
lution of apparent contradiction is the following. In order
to transit from quantum to classical mechanics we need to
build a wave packet from the stationary solutions. De-
noting the wave packets for finite and infinite motions
with the same average momentum P at the time t0 as
ψf (r, t) and ψinf (r, t) respectively, we describe neutron
by localized wave packet ψ0(r, t), which at time t0 also
has average momentum P, and spin is non-collinear to
the magnetic field. The centers of all packets coincide.
Thus, ψ0(r, t) = aψf (r, t)+bψinf (r, t), where coefficients
a and b depend on spin orientation at time t0. The aver-
age spin value ⟨s(t)⟩ at time t > t0 is

⟨s(t)⟩ = ⟨aψf (r, t) + bψinf (r, t)| s
|aψf (r, t) + bψinf (r, t)⟩

= |a|2 ⟨ψf (r, t)| s |ψf (r, t)⟩
+ |b|2 ⟨ψinf (r, t)| s |ψinf (r, t)⟩
+ 2Re [a∗b ⟨ψf (r, t)| s |ψinf (r, t)⟩] .

(31)

If during time δt = t − t0 the centers of the pack-
ets ψf (r, t) and ψinf (r, t) diverge by distance δr much
greater than size σwp of the packet ψ0(r, t0) at time t0,
then the interference term disappears and we are left
with two classical trajectories, finite and infinite, hav-
ing corresponding spins (parallel and anti-parallel to B).
Otherwise, if during δt the distance δr ≲ σwp, then inter-
ference is important and we are having one wave packet
with precessing average spin.

The size of the wave packet could be estimated as the
size of the quantim oscillator coherent state [13] with
oscillation frequency (paragraph IV)

ω ∼

√
|µ|B0

Mρ20
, (32)
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σwp =

(
ℏ

2Mω

)1/2

∼
(

ℏ2ρ20
M |µ|B0

)1/4

, (33)

where B0 is characteristic magnetic field at radius ρ0.
Note that for sextupole G2 = B0/ρ

2
0 and ρ0 disappears

from σwp in (33). The distance between diverging trajec-
tories is

δr ∼ |µ|B0

Mρ0
δt2 =

|µ|B0

Eρ0
L2, (34)

where δt ≈ LM/p, p =
√
2ME, L is longitudinal size

of the magnet, and longitudinal speed is much greater
than transverse one. Hence, application condition of our
solution and existence of SGE ( δr ≳ σwp) is

L ≳

(
ℏ2E4

M

ρ60

|µ|5B5
0

)1/8

, (35)

which requires low energies and high gradients B0/ρ0.
For the case described in section III with E = 0.033 eV,
G = 400 T/m, ρ0 = 2 mm, the condition yields L ≳
10 cm.

Let us recall, that equations (28) and (29) are valid
only for neutral particles, since for charged particles
(electron or proton) in macroscopic fields the spin part
of the magnetic moment is insignificant with respect to
the total magnetic moment. As a result, there is no un-
polarized beam splitting into two polarized [14].

Advantage of our approach, using Hamiltonians (28)
and (29), is that we reduce the motion of neutral spin-
1/2 particle in the magnetic field to the classical motion
of spinless particle in the potential well.

Since momentum component pz is conserved, and mo-
mentum direction in {xy} plane is changed, then the total
classical momentum p will also change its direction. This
observation opens a possibility for storage ring creation
by using a combination of lenses.

In the following sections we compare numerical results
of our approach with reported results of neutron exper-
iments [3, 4] and present conceptual design of a storage
ring based on Hamiltonians (28) and (29).

III. COMPARISON WITH NEUTRON BEAM
SPLITTING EXPERIMENT

The authors of [4] conducted Stern-Gerlach experiment
with neutron beam and published results together with
the detailed description of the experimental setup, which
allows us to verify our approach. The authors reported
neutron beam splitting in the field By = B0 +G1y with
B0 = −0.8 T, G1 = 400 T/m. The magnet length
was L = 0.5 m. The beam parameters were: energy
E = 0.033 eV, energy spread is not reported (we assume
none), horizontal width ∆x = 2.5 mm, vertical width
∆y = 0.25 mm (we assume uniform distribution), hori-
zontal angular spread αx = ±0.4′ = ±1.16 × 10−4, ver-
tical αy = ±1.16× 10−4 (we assume normal distribution

with 3 standard deviations). Observed beam deflection
was ±2.3 × 10−4. The approximate number of detected
particles was 104.
In order to test our solution, we performed calcula-

tion of magnetic field in the magnet [4] with the help
of COMSOL Multiphysics® software [15]. The magnet
field was found to be significantly nonlinear. Since the
authors reported only the values of the constant field and
its gradient, we represent the original magnet as a skew
quadrupole with identicalG1 = 400 T/m, while the beam
is shifted vertically with respect to symmetry plane by
2 mm providing similar B0 = −0.8 T. The field of such
a magnet is

Bx = G1x, By = −G1y, Bz = 0. (36)

FIG. 1 shows the scheme of the simulated magnet and
neutron beam position and dimensions. The beam prop-
agates along the z axis.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x, mm

y,
m
m

N

N

SS S

FIG. 1. The scheme of simulated magnet (skew quadrupole),
magnetic field lines, position, shape and dimensions of the
beam (the black rectangle).

Substitution of the fields (36) into (28) and (29) yields
Hamiltionians for skew quadrupole,

Hf
sq =

p2

2M
+ |µ| |G1|

√
x2 + y2, (37)

Hinf
sq =

p2

2M
− |µ| |G1|

√
x2 + y2. (38)

The equations of motions are ż =
pz
M

⇒ z = z0 +
pz,0
M

t,

ṗz = 0 ⇒ pz = pz,0,
(39)
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ẋ =

px
M

ṗx = ∓ |µ| |G1|x√
x2 + y2

,
(40)


ẏ =

py
M

ṗy = ∓ |µ| |G1| y√
x2 + y2

,
(41)

where pz,0 =
√
2ME is the initial condition, and the

top sign in px,y equations describes the case of the finite
motion. The initial conditions for numerical simulations
were chosen as: uniform distribution with given width
and expected values ⟨x⟩ = 0, ⟨y⟩ = 2 mm for coordinates
{x, y}; normal distribution with σ = αx,ypz,0/3 and ex-
pected values ⟨px,y⟩ = 0 for momenta {px, py}.

Note that equations (40) and (41) differ from equations
(3) and (4) reported in [12] and there is no uniform force.

Equations (40) and (41) for horizontal and vertical mo-
tion were solved numerically with the help of Wolfram
Mathematica [16].

One half of the initial beam (black rectangle on FIG. 1)
was propagated through the skew quadrupole. Its trajec-
tory corresponds to the Hamiltonian (37) describing par-
ticles with spin directed along the field. The motion of
the other half is described by the Hamiltonian (38) cor-
responding to spin opposite to the field direction. FIG. 2
and FIG. 3 show resulting coordinate distribution in the
detector plane and normalized momentum distributions,
respectively, after the skew quadrupole.

-2 -1 0 1 2

-2

-1

0

1

2

3

4

x, mm

y,
m
m

5

10

15

20

25

30

FIG. 2. 2d coordinate beam distribution in the detector plane
at distance of 256 cm. The top (larger) spot corresponds
to Hamiltonian (38), the bottoms (smaller) corresponds to
Hamiltonian (37). The color denotes the number of particles.

-0.0003-0.0002-0.0001 0.0000 0.0001 0.0002 0.0003
0

100

200

300

400

500

py

pz

N

FIG. 3. Normalized vertical momentum beam distribution
behind the skew quadrupole.

The average deflection angle obtained in our simula-
tion is ±(1.7± 0.4)× 10−4 which is close to ±2.3× 10−4

reported in [4]. The difference of about 30% in deflection
angles could be explained by presence of higher multi-
poles in the original magnet [4] and by uncertainties of
the beam initial conditions.

IV. NEUTRON MOTION IN MULTIPOLE
MAGNET

Dipole magnet does not affect neutron motion. In
charged particle accelerators quadrupole and sextupole
magnets are routinely used, and advanced technologies of
magnet manufacturing make it possible to achieve high
gradients necessary to control neutron motion. There-
fore, below we consider neutron motion in quadrupole
and sextupole magnets.

A. Neutron trajectories in quadrupole

Hamiltonians and corresponding equations of motion
for neutron in the quadrupole are identical to those for
the skew quadrupole (37) and (38), (39), (40) and (41).
Since, there is no simple analytic solution in Cartesian
coordinate system (transverse motion is intrinsically cou-
pled), we use cylindrical coordinate system {ρ, φ, z}, in
which Hamiltonian reads

Hq =
p2z
2M

+
p2ρ
2M

+
p2φ

2Mρ2
± |µ| |G1| ρ, (42)

where x = ρ cosφ, y = ρ sinφ, pρ = px cosφ + py sinφ,
pφ = pyx − pxy, the top sign “+” corresponds to finite
motion, the bottom “−” to infinite. The angular momen-
tum is time independent pφ = const because there is no
direct dependance on φ in (42), but the angular velocity
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obeys equation

φ̇ =
pφ
Mρ2

. (43)

The finite motion is governed by the potential

U(ρ) =
p2φ

2Mρ2
+ |µ| |G1| ρ, (44)

which minimum ρ∗ and turning points ρ1,2 are found in
(19) and (20), where angular momentum is pφ = mℏ
(m≫ 1). The radial equations of motion are

ρ̇ =
pρ
M

ṗρ =
p2φ
Mρ3

− |µ| |G1| .
(45)

Introducing

E⊥ =
p2ρ,0
2M

+
p2φ

2Mρ20
+ |µ| |G1| ρ0 = const, (46)

with ρ0 being initial condition, we find: turning points
ρ1,2 as solutions of

E⊥ =
p2φ

2Mρ2
+ |µ| |G1| ρ, (47)

and period of radial oscillations according to

Tρ =
√
2M

∫ ρ2

ρ1

dρ√
E⊥ −

p2φ
2Mρ2

− |µ| |G1| ρ

. (48)

The oscillation period, corresponding frequency ωρ =
2π/Tρ and spatial period λρ = vzTρ have a strong de-
pendence on initial conditions (property of nonlinear os-
cillations) and have no simple analytic representation.

For the quadrupole with gradient G1 = 100 T/m and
neutron with energy E = 10−7 eV and initial conditions
x0 = 1 mm, y0 = 0 mm, pzc = 13.71 eV (vz = 4.37 m/s),
px,0c = 3 eV, py,0c = 3 eV numerically found trajectory
is shown in FIG. 4. Note that trajectory never closes,
and the spin direction is always along the field lines on
the particle’s trajectory.

The infinite motion is governed by the potential

U(ρ) =
p2φ

2Mρ2
− |µ| |G1| ρ, (49)

which does not form a potential well.
Since in both cases of finite or infinite neutron motion

in the quadrupole, trajectory is not an arc of the circle
as it is for electron in the bending magnet, its use for
storage ring would be difficult.

Now let’s consider what was observed in Stern-Gerlach
experiment [4] (section III), the beam splitting in the ver-
tical direction was symmetrical with respect to the beam

-4 -2 0 2 4
-4

-2

0

2

4

x, mm

y,
m
m

N

N

S

S

FIG. 4. An example of neutron trajectory (dark blue) in the
quadrupole with G = 100 T/m, E = 10−7 eV, x0 = 1 mm,
y0 = 0 mm, px,0c = 3 eV, py,0c = 3 eV, quadrupole poles are
in blue and red, field lines are in black.

entrance position in the magnet (FIG. 2 and FIG. 3),
because the length of the magnet L = 0.5 m was smaller
than λρ ≈ 6.62 m. For the magnet length L = 6.62 m
the deflection angle of the infinite trajectory is signifi-
cantly larger (2.3 ± 0.13) × 10−3 than for the finite one
(−6.6±7.8)×10−5. The finite and infinite trajectories in-
side the magnet as a function of magnet length are shown
in FIG. 5.

fin

infin

0 2 4 6 8 10 12 14
-4

-2

0

2

4

6

8

10

z, m

y,
m
m

FIG. 5. Beam vertical trajectories in the skew quadrupole as
a function of the magnet length.
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B. Neutron trajectories in sextupole

Sextupole field and Hamiltonians are

Bx = Sxy, By = S

(
x2 − y2

)
2

, Bz = 0,

Hsext =
p2

2M
± |µ| |S| x

2 + y2

2
,

(50)

where the top sign “+” and the bottom “−” describe
finite and infinite motion, respectively, S = 2G2. Equa-
tions of longitudinal motion are identical to (39), equa-
tions of transverse motion are ẋ =

px
M

ṗx = ∓ |µ| |S|x,
(51)

 ẏ =
py
M

ṗy = ∓ |µ| |S| y.
(52)

These equations have simple uncoupled solutions: for fi-
nite motion

x = x0 cos(ωt) +
px,0
Mω

sin(ωt)

px = −x0Mω sin(ωt) + px,0 cos(ωt)

y = y0 cos(ωt) +
py,0
Mω

sin(ωt)

py = −y0Mω sin(ωt) + py,0 cos(ωt),

(53)

for infinite motion

x = x0 cosh(ωt) +
px,0
Mω

sinh(ωt)

px = x0Mω sinh(ωt) + px,0 cosh(ωt)

y = y0 cosh(ωt) +
py,0
Mω

sinh(ωt)

py = y0Mω sinh(ωt) + py,0 cosh(ωt),

(54)

where subscript 0 denotes initial conditions,

ω =

√
|µ| |S|
M

. (55)

Note that trajectories in cylindrical coordinates are el-
lipses for finite motion and hyperbolas for infinite motion.
The center of ellipse coincides with the symmetry axis of
the sextupole; therefore, sextupole plays the role of the
focusing (defocusing) lens but not the bending magnet.

The traveled distance in the magnet relates to the pe-
riod of transverse oscillations as

λ = vz
2π

ω
=
pz,0
M

2π

√
M

|µ| |S|
. (56)

FIG. 6 shows neutron trajectory and field lines in the
sextupole for particular initial conditions E = 10−3 eV,

-2 -1 0 1 2
-2

-1

0

1

2

x, mm

y,
m
m

N

N N

N

SS

S

S

FIG. 6. An example of neutron trajectory (dark blue) in the
sextupole with S = 4×105 T/m2, E = 10−3 eV, x0 = 0.7 mm,
y0 = 0 mm, px,0c = 0 eV, py,0c = 3.37 eV (vy,0 = 1.07 m/s),
sextupole poles are in blue and red, field lines are in black.
Spin direction is always along the field lines on the particle’s
trajectory.

x0 = 0.7 mm, y0 = 0 mm, px,0c = 0 eV, py,0c = 3.37 eV

(vy,0 = 1.07 m/s) and S = 4 × 105 T/m
2
. Trajecto-

ries of the three particles in the sextupole with S =
4 × 105 T/m

2
, E = 10−3 eV, x0 = {0.25, 0.5, 1} mm,

y0 = 0 mm, px,0c = 0 eV, py,0c = 0 eV are shown in
FIG. 7 and in FIG. 8 for finite and infinite motions, re-
spectively.

0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

z, m

x,
m
m 1

2

3

FIG. 7. Neutron horizontal trajectory (finite) dependence on
traveled distance z in the sextupole with S = 4× 105 T/m2,
E = 10−3 eV, x0 = {0.25, 0.5, 1} mm (blue,yellow,green),
y0 = 0 mm, px,0c = 0 eV, py,0c = 0 eV.
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FIG. 8. Neutron horizontal trajectory (infinite) dependence
on traveled distance z in the sextupole with S = 4×105 T/m2,
E = 10−3 eV, x0 = {0.25, 0.5, 1} mm (blue,yellow,green),
y0 = 0 mm, px,0c = 0 eV, py,0c = 0 eV.

C. Transport maps

In order to design a storage ring, it is necessary to
define a transformation of neutron coordinates from point
1 to point 2. Since equations (53) and (54) are linear,
such a transformation is a transport matrix. Introducing
sextupole strength, time of flight through sextupole of
length L

K1 =
ωM

pz
, t = L

M

pz
, ωt = K1L, (57)

normalized transverse momenta (pz = const)

x′ = px/pz, y′ = py/pz, (58)

and vectors

X =

(
x
x′

)
, Y =

(
y
y′

)
(59)

we can write sextupole transport matrix R via the rela-
tion X2 = RX1 (the same for Y), as

Rfin
x,y =

 cos(K1L)
sin(K1L)

K1
−K1 sin(K1L) cos(K1L)

 (60)

for finite motion, and

Rinf
x,y =

 cosh(K1L)
sinh(K1L)

K1
K1 sinh(K1L) cosh(K1L)

 (61)

for infinite motion. The matrices (60) and (61) describe
focusing and defocusing elements, similar to charged par-
ticle optics (electron in quadrupole) [17].
The transport matrix of the drift of length L is obvious,

Rx,y =

(
1 L
0 1

)
. (62)

The transport matrix for the quadrupole is significantly
more complicated due to the absence of simple analytical
solution of equations of motion. Therefore, below we do
not consider quadrupoles.

V. PROPOSAL OF TESTING EXPERIMENT

Neutron beam focusing with sextupole was performed
in [18]. Despite of successful demonstration, the sex-
tupole was short, and splitting of finite and infinite tra-
jectories was symmetrical. In order to observe the asym-
metry between two cases, we propose to conduct an ex-
periment at Budker INP. For this we plan to use an ex-
isting accelerator-based neutron source VITA [19] devel-
oped for Boron Neutron Capture Therapy (BNCT).
Layout of experimental setup is shown in FIG. 9.

The DC vacuum insulated tandem accelerator delivers
10 mA proton or deutron beam with energy 2.3 MeV to
the lithium target, producing neutrons in 7Li(p,n)

7
Be or

Li(d,n) reactions. The former yields neutrons with aver-
age energy of 0.2 MeV at rate of 5× 1012 s−1, the latter
produces neutrons with average energy of 6 MeV at rate
of 1013 s−1. Neutrons are slowed down in moderator, and
through neutron guide cold neutrons are delivered to the
bunker, where a magnet and detector will be installed.
The spatial distribution of neutron beam is measured ei-
ther by a neutron detector with a lithium or boron scin-
tillator, or by a HPGe γ-spectrometer with samarium,
cadmium or boron converter.
In order to distinguish trajectories of finite and infinite

cases (FIG. 7 and FIG. 8) the beam should perform at
least one spatial oscillation. The spatial period of the
oscillation (56) depends on neutron beam energy, sex-
tupole length and gradient. Choosing the magnet length
equal to one spatial period at maximum gradient allows
by varying the sextupole strength to observe oscillation
of finite trajectory and divergence of the infinite. The
spatial oscillation period (56) could be written as

λ[m] = 36183.7

√
E[ eV]

S[ T/m2]
. (63)

It follows from (63) that colder neutrons permit relaxed
sextupole parameters (gradient, length, aperture). How-
ever, obtaining ultra-cold neutrons requires more effort:
cryogenic technique, gravitation, etc. Thus, the choice
of experimental setup is a compromise between neutron
beam energy and magnet technologies.
Since we plan to vary the sextupole gradient, the sex-

tupole should be an electromagnet. Our calculations with
COMSOL Multiphysics® software [15] showed that with
aperture radius R = 5 mm it is possible to manufac-
ture the normal conducting sextupole magnet with the
maximum gradient of S = 52 × 103 T/m

2
. In spite of

saturated iron, field quality in the aperture is 10−4 with
250 A of excitation current and 12 turns per coil. The
chosen length of the magnet is L = 1.59 m. The general
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FIG. 9. Layout of the experimental facility: 1 – vacuum insulated tandem accelerator (VITA [19]), 2 – lithium target, 3 –
moderator, 4 – neutron guide, 5 – sextupole magnet, 6 – detector.

view, field and uniformity of the sextupolar gradient of
the proposed magnet are shown on FIG. 10 and FIG. 11.
The magnet yoke is made of anisotropic steel 3425 to
provide maximum gradient.

FIG. 10. Magnetic field (in color) of the proposed sextupole
magnet with internal aperture of R = 5 mm and S = 52 ×
103 T/m2, close up of the working aperture.

The neutron beam parameters are E = 10−4 eV, uni-
form spatial distribution with x0 = 0 mm, y0 = 2 mm,
∆x = ∆y = 0.25 mm, normal angular distribution
αx = ±0.4′ = ±1.16× 10−4, vertical αy = ±1.16× 10−4

(3 standard deviations). The corresponding period of

spatial oscillations is λ = 1.59 m at S = 52× 103 T/m
2
.

Detector is placed at L = 0.1 m from the end of the
sextupole.

The beam deflections for two sextupole strengths of
S = 103 T/m

2
and S = 104 T/m

2
, shown on FIG. 12,

FIG. 11. Uniformity of the sextupole gradient (in color) of
the proposed sextupole magnet with internal aperture of R =
5 mm and S = 52× 103 T/m2.

reveal asymmetry in deflection of the infinite and finite
trajectories at higher sextupole gradient, which will in-
dicate validity of our approach.

VI. NEUTRON — ELECTRON (POSITRON)
INTERSECTING RINGS (“COLLIDER”)

Study of nucleon (proton or neutron) internal structure
is one of the most important tasks of particle physics.
Neutron-electron collider will enable the first direct mea-
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FIG. 12. 2d coordinate beam distribution on the detector for S = 1 × 103 T/m2 (left) and S = 1 × 104 T/m2 (right). The
top (larger) spot corresponds to Hamiltonian (38), the bottoms (smaller) corresponds to Hamiltonian (37). Color denotes the
number of particles.

surement of the cross section for electron (positron) scat-
tering on free neutrons. Electrons scattered at angles of
6-25 degrees may be detected by a tracking system based
on micro-pattern gaseous detectors placed inside a 1.5 T
solenoid magnet. Data acquisition will be performed al-
ternately on electrons and positrons at several energies
from the range of 1.15 GeV to 4.5 GeV. This will allow
measurement of the differential cross section dσn/dQ

2

for momentum transfers Q2 = −q2 from 0.015 GeV2 to
2.5 GeV2. With a luminosity of L = 1030 cm−2 s−1 and
data acquisition time of 107 s the statistical uncertainty
of the dσn/dQ

2 measurement will be no worse than 0.6%
at Q2 < 1 GeV2. In the range of 1− 2.5 GeV2 the three
measurements with a step 0.5 GeV2 will have uncertainty
1%, 2% and 3.5% respectively. The cross sections mea-
sured on electrons and positrons will be averaged. As a
result, all C-odd higher-order contributions to the mea-
sured cross section will be canceled. The cross section
measured on free neutron is possible to compare with
the calculation based on the values of the neutron form
factors obtained in experiments on electron scattering on
deuteron and He3 [20]. From the difference in the cross
sections measured on electrons and positrons, the contri-
bution to the scatternig cross section from the interfer-
ence of single-photon and two-photon exchange diagrams
can be estimated.

Importance of these experiments stimulates creation of
the new machine designs. However, machines with elec-
tron (positrons) scattering against neutron beams were
never made. Meanwhile, the two ingredients of neutron
collider, storage ring with detailed injection system, final
focus lenses to increase particle density at the collision
point, already exist. It only remains to combine them in
one facility, enabling the focused neutron beam to serve

as a target for electrons, positrons or γ-quanta.
Neutron acceleration to relativistic energies is not pos-

sible. Low energy free neutrons are valuable because pre-
vious studies were performed only with bound neutrons
(deuterium). Hence, neutron energy in the proposed fa-
cility is determined by feasibility and compactness of the
magnetic system and final focus.
Construction of the storage ring with discrete magnets

requires matching not only the beam trajectory with the
following element, but also spin with the direction of the
magnetic field.

A. Beam size propagation

For the centered beam (⟨u⟩ = 0, ⟨u′⟩ = 0), the beam
“sigma” matrix is defined by [17]

Σu =

(〈
u2
〉

⟨uu′⟩
⟨uu′⟩

〈
u′2
〉) , (64)

where ⟨⟩ denotes average over the beam, u denotes x
or y, and expression XTΣ−1

u X = 1 (the same for Y)
describes beam ellipse in {u, u′} plane. We consider x
and y dimensions separately because equations of motion
(51) and (52) are not coupled. Using solutions (53) and
(54) we find ⟨xx′⟩ = 0, ⟨yy′⟩ = 0, and “sigma” matrix
(64) for neutron becomes diagonal.
The transformation of the beam ellipse from position

1 to position 2 is given by

Σ2 = RΣ1R
T , (65)

where R is a transport matrix.
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B. Storage ring and Interaction region

Storage ring consists of the toroidal sextupole forming
a closing arc and interaction region (IR), see FIG. 13.
The telescopic transformation between the opposite ends,
1 and 2, of the closing arc is organized by two sextupoles
S1, drifts d1 and d0. The transport matrix in both planes
x and y is chosen to be −I,

R12 =

(
−1 0
0 −1

)
, (66)

creating a mirror image of the beam and ensuring spin
matching due to the sextupole field symmetry (expression
(50) and FIG. 6).

   

IP 

S1 S1 

ARC ARC 

d1 d0 d0 d1 

2 

K1 L K1 L 

1 

FIG. 13. Sketch of interaction region: S1 – focusing sex-
tupoles of strength K1 and length L, ARC – toroidal arc
sextupole, blue lines – beam rays, IP – interaction point, d0
and d1 are the distances between the elements.

In order to obtain telescopic transformation (66), the
lengths of the drifts should be

d0 = d1 =
cot(K1L)

K1
, (67)

where K1 and L are sextupole S1 strength and length
respectively. The strength K1 of sextupole defines the
minimum beam size at the IP as〈

u2
〉
IP

=
1

K2
1 sin

2(K1L)

〈
u′2
〉
arc

, (68)

where subscript IP or arc denote corresponding position.
Minimization of the beam size at the IP requires mini-
mum beam angular spread at the end of the arc and large
K1 of the final focus sextupole, which demands smaller
neutron energy and higher sextupole gradient.

The arc is a toroidal sextupole; therefore, using (53)
and (57) we find relation between beam size and angular
spread as

〈
u′2
〉
arc

= K2
1,arc

〈
u2
〉
arc

=
|µ| |Sarc|M

p2z

〈
u2
〉
arc

. (69)

Hence, the arc sextupole should have a large aperture to
accumulate more particles and smaller gradient to reduce
the angular spread.

C. Luminosity

Luminosity of single collision is defined by number of
events N of the process with the cross section σ

L1 =
N

σ
=

∫
dV dt nenn

√
(v⃗e − v⃗n)

2 − [v⃗e × v⃗n]
2

c2
,

(70)
where v⃗e,n and ne,n are velocities and densities of electron
and neutron bunches, dV = dx dy dz.
Since neutron speed for En = 10−4 eV is vn = 138 m/s,

and ve ≫ vn for relativistic electron (Ee = 400 MeV),
we can neglect neutron speed in (70), and luminosity,
independent of crossing angle, is given by

L1 =

∫
dV dct nenn. (71)

We assume normal distribution for electron bunch
propagating along s axis with beam dimensions σx,y,s
and number of particles Ne

ne =
Ne

(2π)3/2σxσyσs
exp

[
− x2

2σ2
x

− y2

2σ2
y

− (s− ct)2

2σ2
s

]
.

(72)
Density of neutron beam with number of particles Nn,

occupying the whole storage ring circumference Πn, with
equal transverse sizes ax = az = an is

nn =
Nn

SnΠn
=

Ṅn

Snvz
, (73)

where Sn = πa2n is transverse cross section of the neutron

bunch, Ṅn is neutron bunch intensity.
Assuming electron bunch transverse dimensions to be

significantly smaller than neutron beam sizes, neglecting
neutron sizes dependance on longitudinal coordinate, we
obtain single collision luminosity

L1 = Ne
Nn

SnΠn
Lint = Ne

Ṅn

Snvz
Lint, (74)

where Lint is the length of electron and neutron bunches
interaction area. For estimations, we accept Lint ≈ 2σs.
For a storage ring collider, where beams collide peri-

odically with frequency f0, and electron beam has Nb

bunches, the total luminosity is

L = L1f0Nb. (75)

D. e±n collider

FIG. 14 shows a sketch of our proposal for e±n col-
lider. The neutron storage ring accumulates neutrons
making a beam occupying the whole circumference. The
electron storage ring is based on VEPP-4M collider [21]
with revolution frequency f0 = 0.819 MHz. The num-
ber of electron bunches is Nb = 100 (harmonic number
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TABLE I. Luminosity and parameters of e±n collider.

E, eV S1, T/m2 L, cm d0 = d1, cm Ṅn, s
−1 Ne an,arc,mm an,IP ,mm L1, cm

−2 L, cm−2s−1

10−4 52× 103 15.9 34.8 105 3.8× 1010 5 0.37 3.7× 1022 3× 1030

10−4 104× 103 11 24.6 105 3.8× 1010 5 0.26 7.5× 1022 6.2× 1030

10−5 52× 103 5 11 105 3.8× 1010 5 0.37 1.2× 1023 9.7× 1030

10−5 104× 103 3.5 7.7 105 3.8× 1010 5 0.26 2.4× 1023 1.9× 1031

FIG. 14. Sketch of e±n collider.

is q = 222), bunch population is Ne = 3.8× 1010 (bunch
current I = 5 mA, total current I = 0.5 A), the electron
bunch length is σs = 3 cm. The electron beam transverse
sizes are irrelevant as long as they are smaller than the
corresponding ones of the neutron beam.

The arc toroidal sextupole and final focus sextupoles
should have the same apertures to avoid the neutron
loss on geometrical aperture. In order to reduce neu-
tron beam angular divergence in the arcs, we chose sex-
tupole gradient to be Sarc = 100 T/m2 with aperture
radius Rarc = 5 mm. The TABLE I presents parame-
ters of IR, beam sizes and luminosities for two neutron
beam energies and two final focus sextupole gradients.
In our conceptual design of e±n collider, we have not
discussed some important topics, which require detailed
investigation, such as neutron beam spatial distribution

with realistic energy spread, estimation of neutron beam
lifetime, neutron injection, and storage, etc. However,
preliminary estimations of design and experimental effi-
ciency do not look discouraging and do not reveal any
show-stoppers.

VII. CONCLUSION

We solved the quantum problem of neutron motion in
2(n+1) pole magnet. With large quantum numbers, neu-
tron motion in the magnetic field is reduced to classical
motion of the spinless particle in two distinct potentials
depending on the spin direction. In the first potential,
particles experiences finite motion, and spin is parallel
to magnetic field; in the second, particle’s trajectory is
infinite, and spin is antiparallel to magnetic field. As
a result, the beam of unpolarized neutrons in the field
of 2(n + 1) pole magnet splits into two (Stern-Gerlach
effect). One beam leaves the magnet according to infi-
nite trajectory, the second beam could be trapped in the
magnet with sufficient length, thus creating a neutron
trap. Trajectory of the finite motion depends on initial
conditions and on a 2(n+ 1) pole magnet; therefore, the
trapped neutron beam will occupy the whole aperture of
the magnet. However, in every trajectory point neutron
beam is polarized and spin is parallel to magnetic field.
This property allows to design not only the trap but also
a storage ring. Conceptual design of such a neutron stor-
age ring with estimated luminosity is presented.

ACKNOWLEDGMENTS

We would like to express sincere gratitude to S. Nikitin,
N. Mezentsev for fruitful discussions, N. Kremnev for the
drawing of the proposed e±n collider.
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