

Applied Radiation and Isotopes

Development of a liquid Fricke dosimeter and its application together with prompt gamma-ray spectrometry for BNCT dosimetry

--Manuscript Draft--

Manuscript Number:	ARI-D-25-01090
Article Type:	Original Paper
Section/Category:	Radiation Measurements
Keywords:	Boron neutron capture therapy; dosimetry; Fricke dosimeter; spectrophotometry; prompt gamma-ray spectrometry
Corresponding Author:	Ksenya Kuzmina Budker Institute of Nuclear Physics SB RAS RUSSIAN FEDERATION
First Author:	Ksenya Kuzmina, Bachelor's Degree
Order of Authors:	Ksenya Kuzmina, Bachelor's Degree Victoria Konovalova, Master's Degree Anna Kasatova, PhD Dmitry Kasatov, PhD Vladimir Nazmov, PhD Alexander Moskalensky, PhD Mikhail Korobeinikov, PhD Mikhail Petrichenkov, PhD Mikhail Uvarov, PhD Vladimir Richter, PhD Sergey Taskaev, PhD
Abstract:	The methodology of boron neutron capture therapy (BNCT) is actively developing worldwide and is beginning to enter clinical practice. Unlike conventional radiation therapy methods, BNCT distinguishes four components of ionizing radiation dose: boron dose, thermal neutron dose (or nitrogen dose), fast neutron dose, and gamma-ray dose. While a decade ago it was believed that the first three dose components were immeasurable (with the first two considered fundamentally unmeasurable), today there are several methods and tools available for measuring all dose components. In this study, chemical dosimetry was used to measure the total dose, specifically employing two types of ferrous sulfate liquid dosimeters: a "conventional" one and a "neutron-sensitive" variant containing sodium tetraborate. The composition of the developed dosimeters was optimized by adding xylene orange as a complexing agent. Calibration of the dosimeter was performed using spectrophotometric methods. The developed Fricke dosimeter, combined with prompt gamma-ray spectrometry, was applied during the treatment of a domestic cat with a spontaneous tumor. This approach enabled the determination of absorbed dose in both the tumor and healthy tissue. Data obtained from these two independent dose measurement methods showed good agreement, leading to the conclusion that their combined use is advisable for BNCT treatment planning and outcome assessment.
Suggested Reviewers:	

Cover letter

Dear Editor,

We have proposed and made an epithermal neutron source that is now considered to be the most attractive for Boron Neutron Capture Therapy (BNCT). The first facility has been actively used at the Budker Institute of Nuclear Physics for a decade. The second facility is installed in the hospital in Xiamen, P.R. China – there they became the second in the world to begin conducting clinical trials of the BNCT technique. We made the third facility for Blokhin National Medical Research Center of Oncology in Moscow, Russia and plan to begin clinical trials at the end of the year. We are making great efforts to develop tools and methods of dosimetry for this new treatment method, because it is very important for the treatment of patients. We believe that we have achieved significant results and therefore we are submitting this article for publication.

We believe that the publication of this article in your journal will greatly contribute to spreading the obtained results.

Sincerely yours,

Prof. Sergey Taskaev,

Chief Researcher, Budker Institute of Nuclear Physics

Head of BNCT Lab., Novosibirsk State University

Highlights

1. Currently, there are no clinically applicable dosimetry methods in boron neutron capture therapy (BNCT) that account for all BNCT dose components.
2. To solve this problem, the article suggests using two methods together: a Fricke chemical dosimeter (measures the total dose) and prompt gamma-ray spectrometry (measures only the boron dose).
3. To make it sensitive to neutrons, the standard Fricke dosimeter solution was modified by adding a boron-containing substance.
4. The methods were successfully applied during an actual therapy session to treat an animal, confirming their functionality.
5. The combined use of Fricke chemical dosimetry and prompt gamma-ray spectrometry allows for the determination of the absorbed dose, which is crucial for therapy planning and outcome assessment.

Development of a liquid Fricke dosimeter and its application together with prompt gamma-ray spectrometry for BNCT dosimetry

1
2 Ksenya Kuzmina ^{a,b} ^{*}, Victoria Konovalova ^{a,b}, Anna Kasatova ^{a,b}, Dmitry Kasatov ^{a,b}, Vladimir Nazmov
3
4 ^a, Alexander Moskalensky ^b, Mikhail Korobeinikov ^a, Mikhail Petrichenkov ^a, Mikhail Uvarov ^c, Vladimir
5 Richter ^{a,d}, Sergey Taskaev ^{a,b}
6

7 ^a Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences,
8 630090, Novosibirsk, Russia
9

10 ^b Novosibirsk State University, 630090, Novosibirsk, Russia
11

12 ^c Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian
13 Academy of Sciences 630090, Novosibirsk, Russia
14

15 ^d Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of
16 Sciences, 630090, Novosibirsk, Russia
17

18 ^{*} *kks01122002@gmail.com*
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Abstract

The methodology of boron neutron capture therapy (BNCT) is actively developing worldwide and is beginning to enter clinical practice. Unlike conventional radiation therapy methods, BNCT distinguishes four components of ionizing radiation dose: boron dose, thermal neutron dose (or nitrogen dose), fast neutron dose, and gamma-ray dose. While a decade ago it was believed that the first three dose components were immeasurable (with the first two considered fundamentally unmeasurable), today there are several methods and tools available for measuring all dose components. In this study, chemical dosimetry was used to measure the total dose, specifically employing two types of ferrous sulfate liquid dosimeters: a "conventional" one and a "neutron-sensitive" variant containing sodium tetraborate. The composition of the developed dosimeters was optimized by adding xylene orange as a complexing agent. Calibration of the dosimeter was performed using spectrophotometric methods. The developed Fricke dosimeter, combined with prompt gamma-ray spectrometry, was applied during the treatment of a domestic cat with a spontaneous tumor. This approach enabled the determination of absorbed dose in both the tumor and healthy tissue. Data obtained from these two independent dose measurement methods showed good agreement, leading to the conclusion that their combined use is advisable for BNCT treatment planning and outcome assessment.

Keywords: boron neutron capture therapy, dosimetry, Fricke dosimeter, spectrophotometry, prompt gamma-ray spectrometry

1. Introduction

1 Boron Neutron Capture Therapy (BNCT) is a promising approach for treating malignant tumors, based
2 on the selective destruction of tumor cells through the accumulation of stable isotope ^{10}B followed by
3 irradiation with epithermal neutrons. The absorption of a neutron by boron triggers the nuclear reaction
4 $^{10}\text{B}(\text{n},\alpha)^7\text{Li}$, releasing a large amount of energy precisely within the boron-containing cell, leading to its
5 destruction [Sauerwein et al., 2012]. Clinical trials of this method using accelerator-based neutron sources
6 have demonstrated positive outcomes [Hirose et al., 2021; Kawabata et al., 2021].
7
8

9 To date, there are no clinically established dosimetry methods capable of accounting for all dose
10 components in BNCT:
11

- 12 • boron dose (primary dose) from the $^{10}\text{B}(\text{n},\alpha)^7\text{Li}$ reaction (α -particles and ^7Li nuclei);
- 13 • nitrogen dose (thermal neutron dose) from the $^{14}\text{N}(\text{n},\text{p})^{14}\text{C}$ reaction products;
- 14 • fast neutron dose, comprising contributions from:
 - 15 • epithermal and fast neutrons via elastic and inelastic scattering (primarily on hydrogen nuclei);
 - 16 • gamma dose, including photon emission from neutron capture by boron ($^{10}\text{B}(\text{n},\gamma)^7\text{Li}$) and hydrogen
 - 17 ($^1\text{H}(\text{n},\gamma)^2\text{D}$) nuclei [International Atomic Energy Agency, 2023].

21 However, it is important to note that in the book [Sauerwein et al., 2012], it is stated that "the first two
22 dose components cannot be measured in principle, but only calculated." Over the past decade, significant
23 progress has been made in the development of dosimetry tools and methods. In particular, at the accelerator-
24 based neutron source VITA [Taskaev et al., 2021] the following approaches are used for dosimetry during
25 scientific research:
26

- 27 • activation foil sets;
- 28 • a compact detector based on a pair of cast polystyrene scintillators, one of which is boron-
29 enriched [Bykov et al., 2021];
- 30 • a developed activation monitor for epithermal neutron flux measurement [Byambatseren et al.,
31 2025];
- 32 • a proposed and implemented "cellular dosimeter" [Dymova et al., 2021];
- 33 • prompt gamma-ray spectroscopy method [Bikchurina et al., 2023].

34 The prompt gamma-ray spectroscopy method [Kobayashi and Kanda, 1983] enables real-time
35 monitoring of boron accumulation in malignant tumor tissue and quantifies the boron dose contribution to
36 the total radiation dose. The technique relies on detecting the prompt gamma-ray (478 keV) emitted when
37 the ^7Li nucleus (produced in the $^{10}\text{B}(\text{n},\alpha)^7\text{Li}$ reaction) transitions from its first excited state ($^7\text{Li}^*$, 478 keV)
38 to the ground state. Due to the extremely short decay time ($\sim 10^{-13}$ sec), the detected gamma line appears as
39 a broadened peak at 478 keV in the spectrum. With sufficient detector energy resolution, this peak can be
40 clearly distinguished from background radiation. The boron dose is calculated based on the count rate of
41 478 keV events, which is proportional to the ^{10}B concentration and thermal neutron flux.
42

43 Italian researchers [Colombo et al., 2024] have highlighted the need for advancing dosimetric methods
44 in BNCT, conducting measurements at the TRIGA Mark II research reactor of the University of Pavia.
45 Their work demonstrated the feasibility of prompt gamma-ray spectrometry for BNCT applications,
46 employing a $\text{LaBr}_3(\text{Ce}+\text{Sr})$ scintillation detector for photon detection. Studies on CdTe double-sided strip
47 detectors for prompt gamma-ray spectrometry in BNCT are presented in [Chiu et al., 2025].
48

49 Several works address modeling of prompt gamma-ray spectrometry. The BNCT-SPECT system
50 developed in [Isao Murata et al., 2021] enables Monte Carlo (MCNP5) calculations of boron dose during
51

BNCT, proposing a GAGG scintillator detector with claimed 5% calculation accuracy. For comprehensive dose assessment, this work advocates chemical dosimetry.

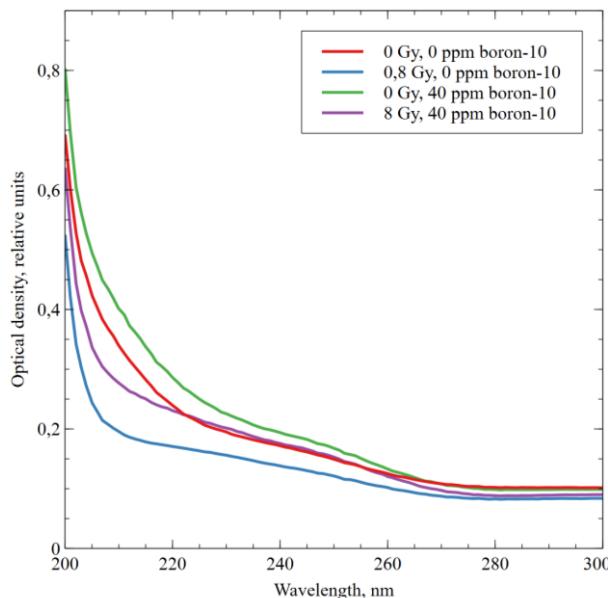
1 An effective chemical dosimetric system for BNCT must meet specific requirements:
2

3

- 4 • high radiation-chemical yield independent of radiation type and variable conditions (reagent
5 concentration, temperature, pH, dissolved gases);
6
- 7 • pre- and post-irradiation stability;
8
- 9 • compatibility with standard purity reagents.

10 The ferrous sulfate (Fricke) dosimeter best fulfills these criteria [Zakaria et al., 2021]. Its operation
11 principle, detailed in [Schreiner, 2004], involves water radiolysis-induced oxidation of Fe^{2+} to Fe^{3+} via free
12 radical reactions. Sensitivity enhancement through xylene orange addition enables spectrophotometric
13 Fe^{3+} detection and visual dose assessment. [Scotti et al., 2022] optimized concentrations to 1.00-0.40 mM
14 ferrous ammonium sulfate and 0.200-0.166 mM xylene orange for 0-42 Gy dose range.
15

16 [Gambarini et al., 2017] characterized optical absorption spectra (300-800 nm) of xylene orange-based
17 Fricke gel dosimeters, finding spectral variations primarily dependent on dye type rather than gelling agents
18 (agarose/gelatin). Their earlier work [Gambarini et al., 2002] employed boron-loaded Fricke gels at the
19 TAPIRO reactor to isolate $^{10}\text{B}(\text{n},\alpha)$ contributions by subtracting $^{14}\text{N}(\text{n},\text{p})$ background. [Saeedi-Sini et al.,
20 2024] confirmed linear response (0.05-5 accelerator gelatin/polyvinyl alcohol matrix effects.
21


22 This study aims to develop a ferrous sulfate dosimetric system for BNCT.
23

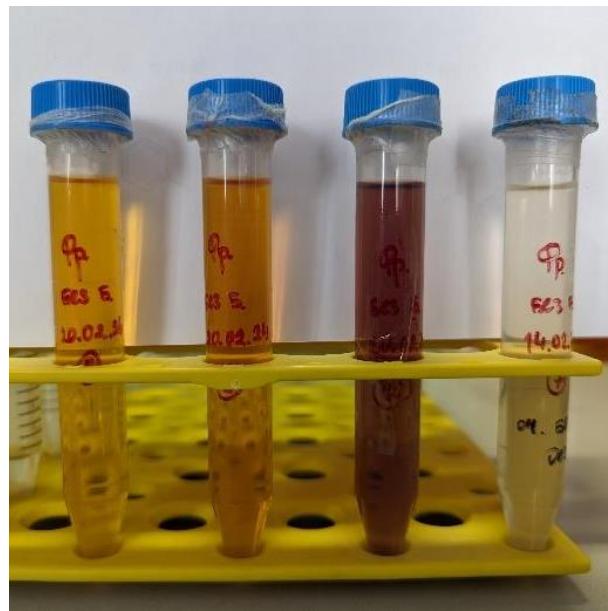
24 The results obtained by chemical dosimetry are presented in comparison with prompt gamma-ray
25 spectrometry measurements.
26

30 2. Experimental details

31 2.1. Development of a dosimeter

32 For the experiment, following literature data, we prepared four Fricke dosimeter samples, two of which
33 contained boric acid to achieve a ^{10}B concentration of 40 ppm in the solution. After preparation, the samples
34 were irradiated using the accelerator-based neutron source VITA. Figure 1 shows the optical absorption
35 spectra of the dosimeters measured with a Varian Cary-50 UV spectrophotometer. The experiment used
36 four Fricke dosimeter samples: an unirradiated sample with 0 ppm ^{10}B , an unirradiated sample with 40 ppm
37 ^{10}B , a sample irradiated with 0.8 Gy dose containing 0 ppm ^{10}B , and a sample irradiated with 8 Gy dose
38 containing 40 ppm ^{10}B . The absorbed dose was estimated through Monte Carlo numerical modeling of
39 neutron and gamma radiation transport. The spectra show insufficient differences to be used for quantitative
40 determination of absorbed ionizing radiation dose.
41

19 **Fig. 1.** Absorption spectrum of dosimeters


20
 21 To increase the dosimeter's sensitivity to radiation dose, xylene orange was added as a complexing
 22 agent, serving as a metallochromic indicator for direct complexometric determination of Fe^{3+} ions. This
 23 modification enhances Fe^{3+} detection sensitivity and enables visual dose assessment through color changes
 24 in the visible spectrum. Boric acid was replaced with sodium borate (sodium tetraborate) following the
 25 protocol [Gambarini et al., 2017].

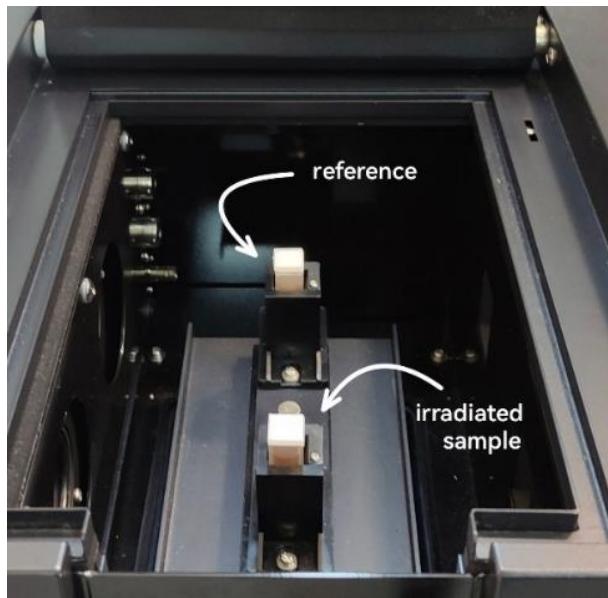
26
 27 The "conventional" Fricke dosimeter was prepared by adding to 1 liter of water: 0.4 g ammonium iron(II)
 28 sulfate, 5.5 ml concentrated sulfuric acid, and 0.13 g xylene orange. For the "neutron-sensitive" Fricke
 29 dosimeter, 1.8 g sodium tetraborate was additionally included to achieve 40 ppm ^{10}B concentration in the
 30 final solution. The solutions were thoroughly mixed using a magnetic stirrer for 20 minutes at room
 31 temperature, resulting in clear solutions without precipitate.

32
 33 *2.2. Composition Testing*

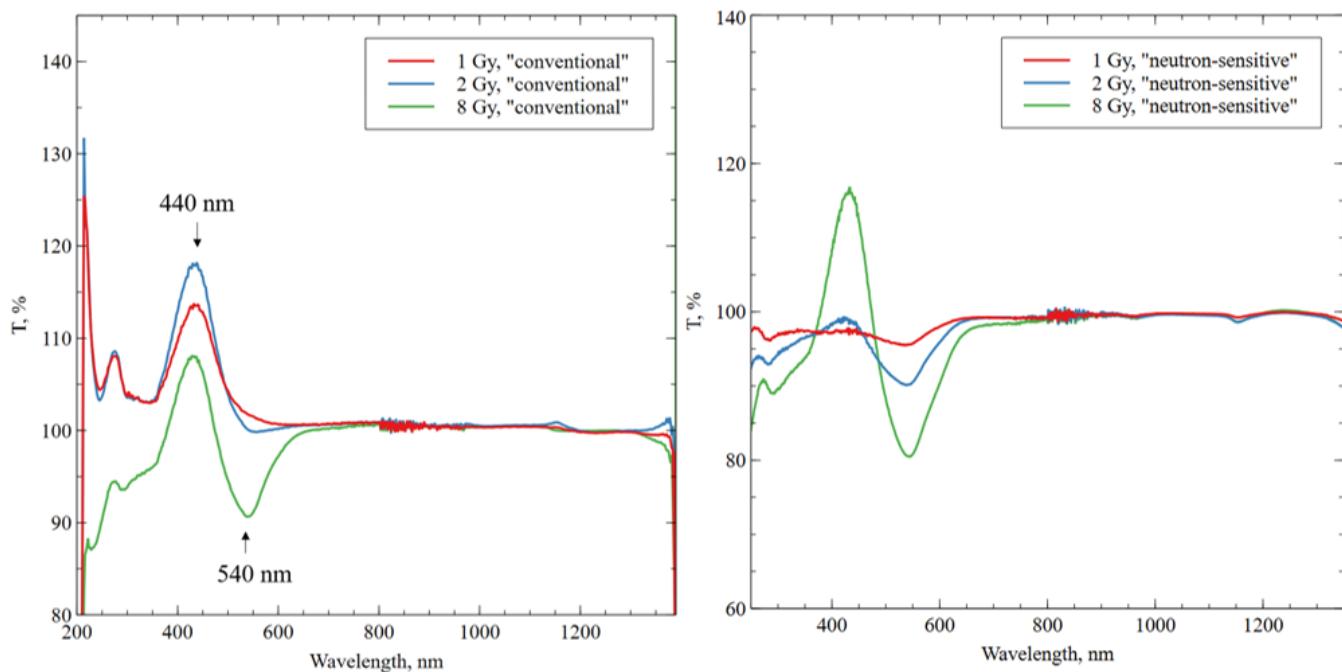
34
 35 Composition testing using the Shimadzu ICPE-9800 spectrometer revealed that the "conventional"
 36 sample contained 27 $\mu\text{g/L}$ iron with no detectable boron, while the "neutron-sensitive" sample contained
 37 28 $\mu\text{g/L}$ iron and 26 $\mu\text{g/L}$ boron.

38
 39 For visual demonstration of the color change caused by Fe^{3+} -xylene orange complex formation, samples
 40 were irradiated with electron beams up to 1000 Gy at the BINP SB RAS Radiation Technology Center
 41 using the PLA-10 accelerator. The irradiated samples are shown in Figure 2.

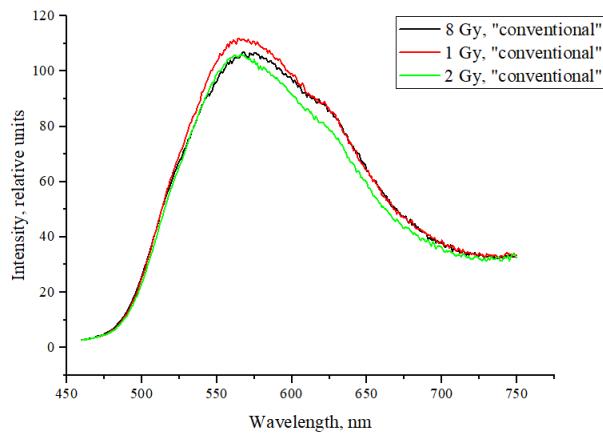
19 **Fig. 2.** Irradiated "conventional" Fricke dosimeters: Dose increases from left to right (far left –
 20 unirradiated, far right – 1000 Gy)


21 **2.3. Calibration of Dosimeters**

22 To construct the calibration curve, prepared samples were irradiated using a ^{137}Cs photon source by
 23 placing them at varying distances from the radiation source for 24-hour exposures. The sample set consisted
 24 of 4 "conventional" and 4 "neutron-sensitive" dosimeters, which received different doses: 0 Gy (control),
 25 1 Gy, 2 Gy, and 8 Gy. To achieve a 1 Gy dose, samples were irradiated for 24 hours at 13.1 cm from the
 26 source; 2 Gy was delivered at 9.3 cm, and 8 Gy at 4.6 cm. The sample arrangement is shown in Figure 3.

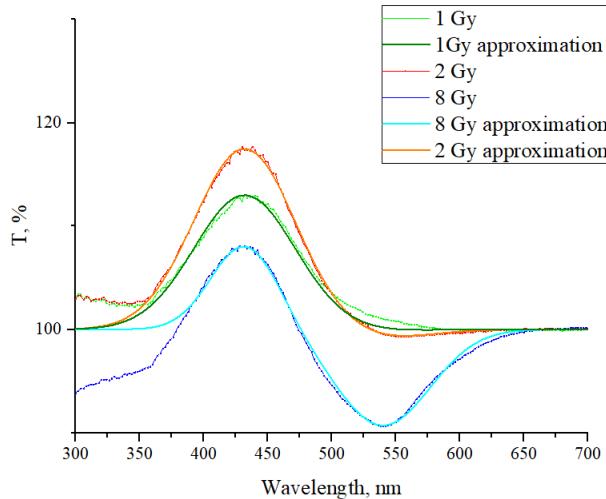

53 **Fig. 3.** Photo of dosimeter placement for calibration using a ^{137}Cs source

54 The samples were analyzed using a Shimadzu UV-3600 Plus spectrophotometer after irradiation. Figure
 55 4 shows the sample placement in the spectrophotometer.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 **Fig. 4.** Arrangement of cuvettes in the Shimadzu UV-3600 Plus spectrophotometer (reference – unirradiated sample)

20
21
22 The absorption spectra of the studied samples are shown in Figure 5. Since the optical design of this
23 spectrophotometer allows comparative measurements of irradiated samples against a control, the obtained
24 spectra were displayed already normalized to the non-irradiated sample. The spectra clearly show two
25 peaks: at 440 nm and at 540 nm. The latter peak indicates the formation of an Fe^{3+} complex with xylenol
26 orange.

53 **Fig. 5.** Absorption spectra of irradiated "conventional" and "neutron-sensitive" Fricke dosimeters

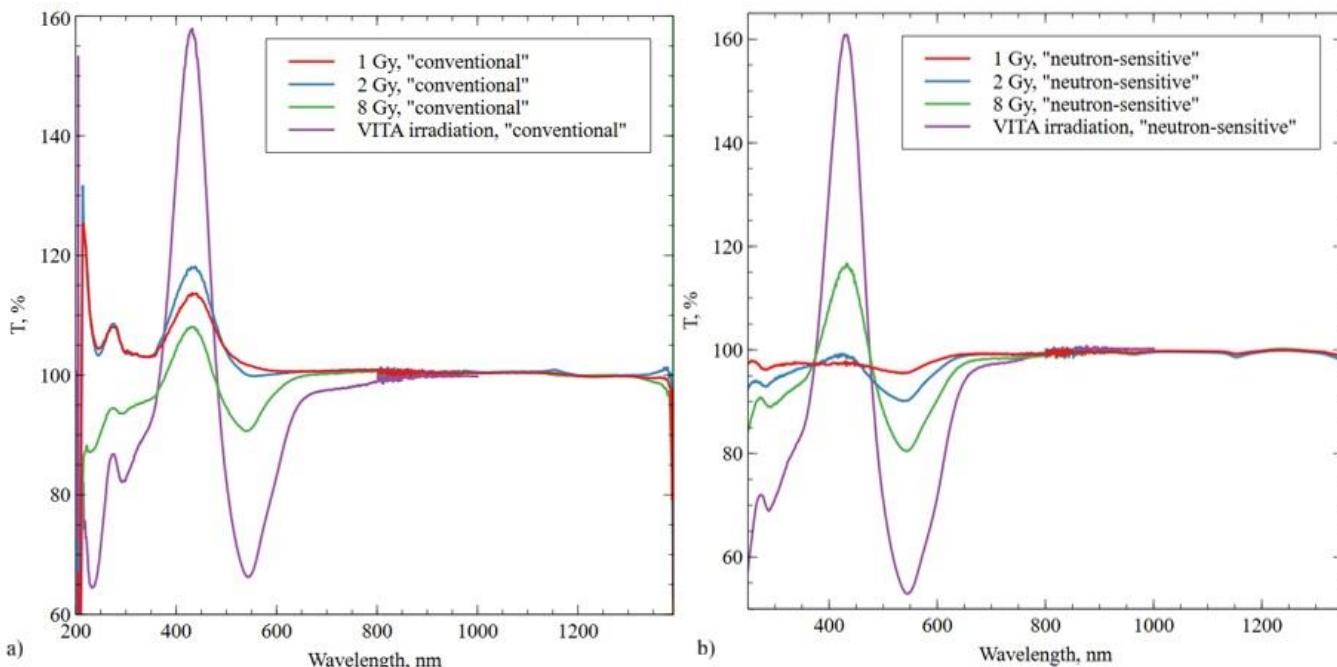

54
55 Initially, it was hypothesized that the 440 nm peak might be associated with solution fluorescence, since
56 xylenol orange exhibits its fluorescence maximum at 440 nm excitation wavelength. However, this
57 hypothesis was refuted following fluorescence spectroscopy measurements conducted on a Shimadzu RF-
58 6000 spectrofluorophotometer. Figure 6 presents the fluorescence spectra obtained under 440 nm
59 excitation. The data demonstrate negligible differences between the spectra of different samples.

1
2
3
4
5
6
7
8
9
10
11
12
13
14 **Fig. 6.** Fluorescence spectra of dosimeters excited at 440 nm
15

16 The spectra shown in Figure 5 were fitted with a sum of Gaussian distributions (Figure 7). The peak at 540
17 nm, corresponding to absorption, was of primary interest. The only statistically significant difference
18 between samples was observed in the coefficient B preceding the exponential term, which served as the
19 basis for calibration (Figure 8):
20

$$y = A \cdot \exp\left(-\frac{(x - x_1)^2}{\sigma_1^2}\right) - B \cdot \exp\left(-\frac{(x - x_2)^2}{\sigma_2^2}\right) \quad (1)$$

45
46 **Fig. 7.** Approximation of the obtained absorption spectra of "conventional" dosimeters
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

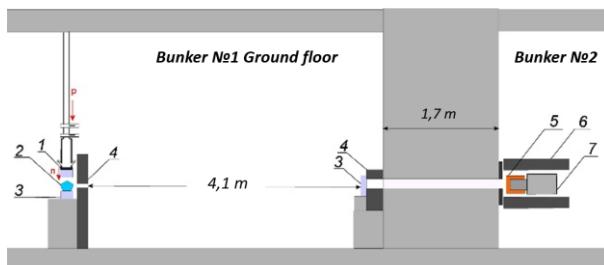


19
20
21 **Fig. 8.** Calibration of dosimeters using a ^{137}Cs source

22 **4. Discussion and conclusion**

23 The developed "neutron-sensitive" Fricke dosimeter was applied during boron neutron capture therapy
24 for a domestic cat with a spontaneous tumor. The irradiation was performed using the accelerator-based
25 neutron source VITA. The Fricke dosimeter was placed on the surface of the beam shaping assembly
26 [Taskaev, 2019].

27 After the cat's treatment, the irradiated Fricke dosimeter solution was analyzed using a Shimadzu UV-
28 3600 Plus spectrophotometer. The spectrum of the irradiated dosimeter, compared to calibration spectra, is
29 shown in Fig. 9. By performing linear approximation, the total equivalent dose was determined to be $35 \pm$
30 6 Gy-eq. Although this exceeds the calibrated range, linearity is assumed to hold up to 100 Gy [De Dios et
31 al., 2017].

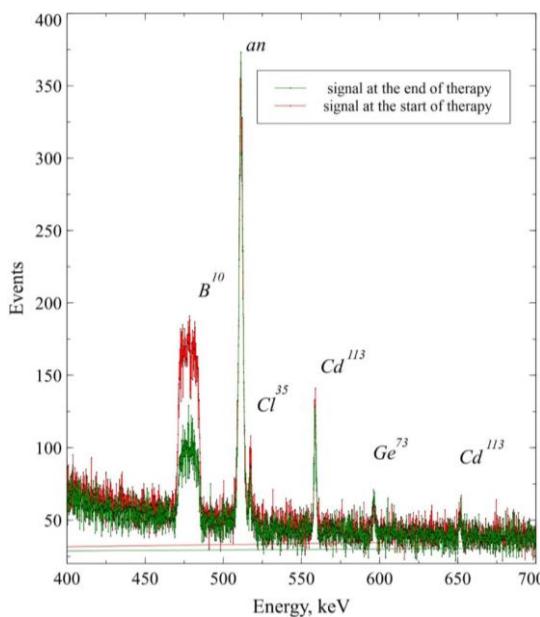

59 **Fig 9.** Absorption spectra of dosimeters irradiated at the VITA accelerator compared with ^{137}Cs -irradiated
60 samples: a) "conventional" dosimeter, b) "neutron-sensitive" dosimeter

1 In the study by [Sycheva et al., 2023], numerical simulation of neutron and gamma-ray transport was
2 used to calculate the spatial distribution of all four dose components considered in boron neutron capture
3 therapy (BNCT): boron dose, nitrogen dose, fast neutron dose, and gamma-ray dose. The same work
4 demonstrated that the results of spatial measurements of boron dose and gamma dose, obtained using a
5 compact detector with paired lithium-loaded polystyrene scintillators (one of which was enriched with
6 boron), agree well with the calculated data [Bykov et al., 2021].

7 The calculations revealed that, under the treatment conditions for the cat, the ratio of the therapeutic
8 dose (boron dose) to the sum of all other doses (nitrogen dose, fast neutron dose, and gamma dose) was 4.3
9 at a boron concentration of 40 ppm. Since the boron concentration in the Fricke "neutron-sensitive"
10 dosimeter was 26 ppm, and the boron dose is proportional to boron concentration, the ratio of boron dose
11 to the sum of the remaining doses contributing to the Fricke dosimeter reading was 2.8. Thus, out of the
12 total Fricke dosimeter dose of 35 ± 6 Gy-eq, the presence of boron at 26 ppm contributed 26 ± 4 Gy-eq,
13 while the remaining 9 ± 2 Gy-eq came from the other three dose components. Given that the dosimeter was
14 placed on the surface, the measured sum of the three dose components was maximal, as supported by the
15 data in [Sycheva et al., 2023].

16 Therefore, the results indicate that the maximum equivalent dose received by cells without boron was
17 9 ± 2 Gy-eq. Taking into account the relative biological effectiveness (RBE) of fast neutrons (3.2), thermal
18 neutrons (3), and photons (1), the total physical dose was determined to be 6.5 ± 1.5 Gy.

19 To estimate the boron dose, it was necessary to determine the boron concentration in the tumor and
20 healthy tissues. This information was obtained using prompt gamma-ray spectrometry, where the energy
21 spectrum of photons emitted from the irradiated cat was measured with an HPGe gamma-ray spectrometer.
22 The experimental setup is shown in Fig. 10. The spectrometer was placed in an adjacent bunker, observing
23 the irradiated object through a hole in the concrete wall. Neutron shielding (acrylic glass and cadmium)
24 was used to protect the spectrometer's detector from neutron interference.



42 **Fig. 10.** Experimental setup for boron dose measurement using prompt gamma-ray spectrometry: 1 –
43 lithium target, 2 – animal, 3 – plexiglas, 4 – lead shielding, 5 – cadmium layer, 6 – lead collimator, 7 –
44 gamma-ray spectrometer

45 The characteristic energy spectrum of photons measured by the spectrometer is shown in Fig. 11. The
46 spectrum clearly displays a Doppler-broadened 478 keV line, reflecting the number of $^{10}\text{B}(\text{n},\alpha)^7\text{Li}$ reactions
47 within the detector's field of view. A lead collimator (2.5 cm wide and 5 cm high) was placed in front of
48 the irradiated object (the cat). Given that the width of the cat's head in the observation area was 5 cm, the
49 detection volume was estimated to be 62.5 cm^3 . The cat was positioned such that the entire tumor (volume
50 17 cm^3) fell within the detection region, while the volume of healthy tissue in the detection area was taken
51 as 45.5 cm^3 in subsequent calculations.

52 Two key observations can be made from Fig. 11. The intensity of the 568 keV line, resulting from the
53 $^{113}\text{Cd}(\text{n},\gamma)^{114}\text{Cd}$ reaction, remains the same at the beginning and end of irradiation. This indicates stability
54 in the neutron flux. Additionally, the constant intensity of the 517 keV line (from the $^{35}\text{Cl}(\text{n},\gamma)^{36}\text{Cl}$ reaction)

1 confirms the stability of the neutron flux and reflects the volume of living tissue within the detection region.
2 The intensity of the 478 keV line (due to the neutron capture reaction in boron) is nearly twice as low at the
3 end of irradiation compared to the beginning. This is attributed to the gradual decrease in boron
concentration in the cells over time.

25 **Fig 11.** Gamma-ray spectrum obtained during BNCT of a laboratory animal

26 During the irradiation period of the cat, the energy spectrum of photons from the detection region was
27 measured in 22 time intervals. Over the entire observation period, $1.73 \cdot 10^6$ photons with an energy of 478
28 keV were registered, resulting from the $^{10}\text{B}(\text{n},\alpha)^7\text{Li}$ reaction. Taking into account the detector sensitivity
29 (located at a distance of 610 cm) of $1.3 \cdot 10^{-6}$ [Bikchurina et al., 2021] and the probability of photon emission
30 in the reaction (93.9%), we determined that $1.4 \cdot 10^{12} \text{ }^{10}\text{B}(\text{n},\alpha)^7\text{Li}$ reactions occurred in the detection volume
31 during irradiation. Since each reaction releases an average of 2.34 MeV (shared between the α -particle and
32 the lithium nucleus), we calculated that 0.53 J of energy was deposited in the detection volume of 62.5 cm^3 .
33 The accuracy of the energy determination is influenced by multiple processes and is estimated to be within
34 10%.

35 When using boronophenylalanine (BPA), it is commonly assumed that the boron concentration in tumor
36 cells is three times higher than in healthy tissue [International Atomic Energy Agency, 2023]. Based on this
37 ratio, we determined that a tumor volume of 17 cm^3 received a boron dose of $16.4 \pm 1.6 \text{ Gy}$, while healthy
38 tissue with a volume of 45.5 cm^3 received a boron dose of $5.5 \pm 0.6 \text{ Gy}$. The boron concentration in the
39 tumor was 17.8 ppm, and in healthy tissue, it was 5.9 ppm.

40 Including the sum of the other three dose components, measured by the Fricke dosimeter ($6.5 \pm 1.5 \text{ Gy}$),
41 we concluded that the tumor in the irradiated cat received a total ionizing radiation dose of $23 \pm 3 \text{ Gy}$, while
42 the dose absorbed by the surrounding healthy tissue did not exceed $12 \pm 2 \text{ Gy}$.

43 Thus, the combined use of Fricke chemical dosimetry and prompt gamma-ray spectrometry allows for
44 the determination of the absorbed dose, which is crucial for therapy planning and outcome assessment.

45 CRediT authorship contribution statement

46 **Ksenya Kuzmina:** Data curation, Formal analysis, Investigation, Visualization, Roles/Writing - original
47 draft. **Victoria Konovalova:** Data curation, Formal analysis, Investigation, Visualization, Roles/Writing -
48 original draft. **Anna Kasatova:** Data curation, Formal analysis, Investigation, Methodology, Supervision,

1 Roles/Writing - original draft. **Dmitry Kasatov:** Conceptualization, Data curation, Methodology, Supervision, Validation, Writing - review & editing. **Vladimir Nazmov:** Investigation, Methodology, Software, Visualization. **Alexander Moskalensky:** Investigation, Methodology, Software, Visualization.
2 **Mikhail Korobeinikov:** Investigation, Resources, Software, Visualization. **Mikhail Petrichenkov:**
3 Investigation, Software, Visualization. **Mikhail Uvarov:** Investigation, Methodology, Software, Visualization.
4 **Vladimir Richter:** Methodology, Supervision, Writing - review & editing. **Sergey Taskaev:**
5 Conceptualization, Funding acquisition, Project administration, Resources, Validation, Writing - review &
6 editing.
7
8
9

10 Declaration of competing interest

11 The authors declare that they have no known competing financial interests or personal relationships that
12 could have appeared to influence the work reported in this paper.
13
14

15 Acknowledgements

16 This research was funded by the Russian Science Foundation (grant number 19-72-30005).
17
18

19 Institutional Review Board Statement

20 The animal study was carried out according to the principles of humanity and the European Community
21 Directive (86/609/EEC) and was approved by the Ethical Committee of Institute of Cytology and Genetics
22 SB RAS, Novosibirsk, Russian Federation (protocol code 91, “Boron neutron capture therapy in domestic
23 cats and dogs”, date of approval 5.10.2021).
24
25
26

27 References

28
29 Bikchurina M., Bykov T., Kasatov D., Kolesnikov Ia., Makarov A., Shchudlo I., Sokolova E., Taskaev S.,
30 2021. *The measurement of the neutron yield of the $^7\text{Li}(p,n)^7\text{Be}$ reaction in lithium targets*. Biology 10,
31 824. doi:10.3390/biology10090824.
32
33 Bikchurina M., Bykov T., Ibrahim I., Kasatova A., Kasatov D., Kolesnikov Ia., Konovalova V.,
34 Kormushakov T., Koshkarev A., Kuznetsov A., Porosev V., Savinov S., Shchudlo I., Singatulina N.,
35 Sokolova E., Sycheva T., Taskaeva I., Verkhovod G., Taskaev S., 2023. *Dosimetry for Boron Neutron
36 Capture Therapy Developed and Verified at the Accelerator-based Neutron Source VITA*. Front. Nucl.
37 Eng. 2, 1266562. doi:10.3389/fnuen.2023.1266562.
38
39
40 Byambatseren E., Bykov T., Kasatov D., Kolesnikov Ia., Savinov S., Shein T., Taskaev S., 2025. *Study of
41 the influence of moderator material on sensitivity of the epithermal neutron flux detector using the
42 $^{71}\text{Ga}(n,\gamma)^{72}\text{Ga}$ reaction*. Applied Radiation and Isotopes 222, 111844.
43 doi:10.1016/j.apradiso.2025.111844.
44
45
46 Bykov, T., Kasatov, D., Koshkarev, A., Makarov, A., Porosev, V., Savinov, G., Shchudlo, I., Taskaev, S.,
47 Verkhovod, G., 2021. *Initial trials of a dose monitoring detector for boron neutron capture therapy*.
48 JINST, vol. 16, P01024. doi:10.1088/1748-0221/16/01/P01024.
49
50 Chiu, I.-H., Osawa, T., Sumita, T., Ikeda, M., Ninomiya, K., Takeda, S., Minami, T., Takahashi, T.,
51 Watanabe, S., 2025. *Development of a real-time boron imaging method for BNCT using CdTe-DSD at
52 the JRR-3*. Applied Radiation and Isotopes 222, 111845. doi:10.1016/j.apradiso.2025.111845.
53
54 Colombo G., Caracciolo A., Introini M., Borghi G., Carminati M., Protti N., Altieri S., Agosteo S., Fiorini
55 C., 2024. *Study of the thermal neutron activation of a gamma-ray detector for BNCT dose monitoring*.
56 Journal of Instrumentation, Vol. 19, No. 05, p. P05047. doi: 10.1088/1748-0221/19/05/P05047.
57
58
59
60
61
62
63
64
65

1 De Dios L.J., Giménez A., Cespón C., 2017. *A new method for dosimetry standardization using ^{137}Cs biological irradiator based on Fricke solution.* Sensors and Actuators B: Chemical, Volume 253, 784-793. doi:10.1016/j.snb.2017.06.164.

2

3 Dymova, M., Dmitrieva, M., Kulagina, E., Richter, V., Savinov, S., Shchudlo, I., Sycheva, T., Taskaeva, I.,
4 & Taskaev, S., 2021. *Method of Measuring High-LET Particles Dose.* Radiation Research 196(2), 192-196. doi:10.1667/RADE-21-00015.1.

5

6

7 Gambarini G., Birattari C., Colombi C., Pirola L., Rosi G., 2002. *Fricke gel dosimetry in boron neutron
8 capture therapy.* Radiat. Prot. Dosim. 101(1-4), 419-422. doi:10.1093/oxfordjournals.rpd.a006015.

9

10 Gambarini G., Veronese I., Bettinelli L., Felisi M., Gargano M., Ludwig N., Lenardi C., Carrara M., Collura
11 G., Gallo S., Longo A., Marrale M., Tranchina L., d'Errico F., 2017. *Study of optical absorbance and
12 MR relaxation of Fricke xylanol orange gel dosimeters.* Radiat. Meas. 106, 622-627.
13 doi:10.1016/j.radmeas.2017.03.024.

14

15 Hirose K., Konno A., Hiratsuka J., Yoshimoto S., Kato T., Ono K., Otsuki N., Hatazawa J., Tanaka H.,
16 Takayama K., Wada H., Suzuki M., Sato M., Yamaguchi H., Seto I., Ueki Y., Iketani S., Imai S.,
17 Nakamura T., Ono T., Endo H., Azami Y., Kikuchi Y., Murakami M., Takai Y., 2021. *Boron neutron
18 capture therapy using cyclotron-based epithermal neutron source and borofalan (^{10}B) for recurrent or
19 locally advanced head and neck cancer (JHN002): An open-label phase II trial.* Radiother Oncol. 155,
20 182-187. doi:10.1016/j.radonc.2020.11.001.

21

22

23 International Atomic Energy Agency, 2023. *Advances in Boron Neutron Capture Therapy.* Vienna.

24

25 Kawabata S., Suzuki M., Hirose K., Tanaka H., Kato T., Goto H., Narita Y., Miyatake S.I., 2021.
26 *Accelerator-based BNCT for patients with recurrent glioblastoma: a multicenter phase II study,*
27 *Neurooncol Adv.* 3(1), vdab067. doi: 10.1093/noajnl/vdab067.

28

29

30 Kobayashi T., and Kanda K., 1983. *Microanalysis system of ppm-order ^{10}B concentrations in tissue for
31 neutron capture therapy by prompt gamma-ray spectrometry.* Nucl. Instrum. Methods Phys. Res. 204,
32 525-531. doi:10.1016/0167-5087(83)90082-0.

33

34 Murata I., Kusaka S., Minami K., Saraue N., Tamaki S., Kato I., Sato F., 2021. *Design of SPECT for BNCT
35 to measure local boron dose with GAGG scintillator.* Applied Radiation and Isotopes 181, 110056.
36 doi:10.1016/j.apradiso.2021.110056.

37

38 Saeedi-Sini, S. A., Sina, S., Sadeghi, M.H., & Farajzadeh, E., 2024. *Development and characterization of
39 a Fricke gel dosimeter for precise measurement in low-dose photon fields.* JINST 19, P06019.
40 doi:10.1088/1748-0221/19/06/P06019.

41

42 Sauerwein W.A.G., Wittig A., Moss R., Nakagawa Y., 2012. *Neutron Capture Therapy: Principles and
43 Applications.* Heidelberg Springer Verlag, Berlin.

44

45 Scotti, M., Arosio, P., Brambilla, E., Gallo, S., Lenardi, C., Locarno, S., Orsini, F., Pignoli, E., Pedicone,
46 L., Veronese, I., 2022. *How Xylanol Orange and Ferrous Ammonium Sulphate Influence the Dosimetric
47 Properties of PVA-GTA Fricke Gel Dosimeters: A Spectrophotometric Study.* Gels 8, 204.
48 doi:10.3390/gels8040204.

49

50

51 Schreiner L. J. *Review of Fricke gel dosimeters,* 2004. J. Phys.: Conf. Ser. 3, 9. doi:10.1088/1742-
52 6596/3/1/003.

53

54

55 Sycheva T.V., Berendeev E.A., Verkhovod G.D., Taskaev S.Yu, 2023. *A Neutron Beam Shaping Assembly
56 for Boron Neutron Capture Therapy of Superficial Tumors.* SIBERIAN JOURNAL OF PHYSICS 18(3),
57 31-42. (In Russ.) doi:10.25205/2541-9447-2023-18-3-31-42.

58

59

60

61

62

63

64

65

1 Taskaev S., 2019. *Development of an Accelerator-Based Epithermal Neutron Source for Boron Neutron
2 Capture Therapy*. Physics of Particles and Nuclei, Vol. 50, No. 5, pp. 569–575.
3 doi:10.1134/S1063779619050228.

4 Taskaev S., Berendeev E., Bikchurina M., Bykov T., Kasatov D., Kolesnikov I., Koshkarev A., Makarov
5 A., Ostreinov G., Porosev V., Savinov S., Shchudlo I., Sokolova E., Sorokin I., Sycheva T., Verkhovod
6 G., 2021. *Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target*. Biology
7 10, 350. doi:10.3390/biology10050350

8 Zakaria A., Lertnaisat P., Islam M., Meesungnoen J., Katsumura Y., Jay-Gerin J.-P., 2021. *Yield of the
9 Fricke dosimeter irradiated with the recoil α and Li ions of the $^{10}\text{B}(n, \alpha)^7\text{Li}$ nuclear reaction: effects of
10 multiple ionization and temperature*. Canadian Journal of Chemistry 99(4), 425-435. doi:10.1139/cjc-
11 2020-0381.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

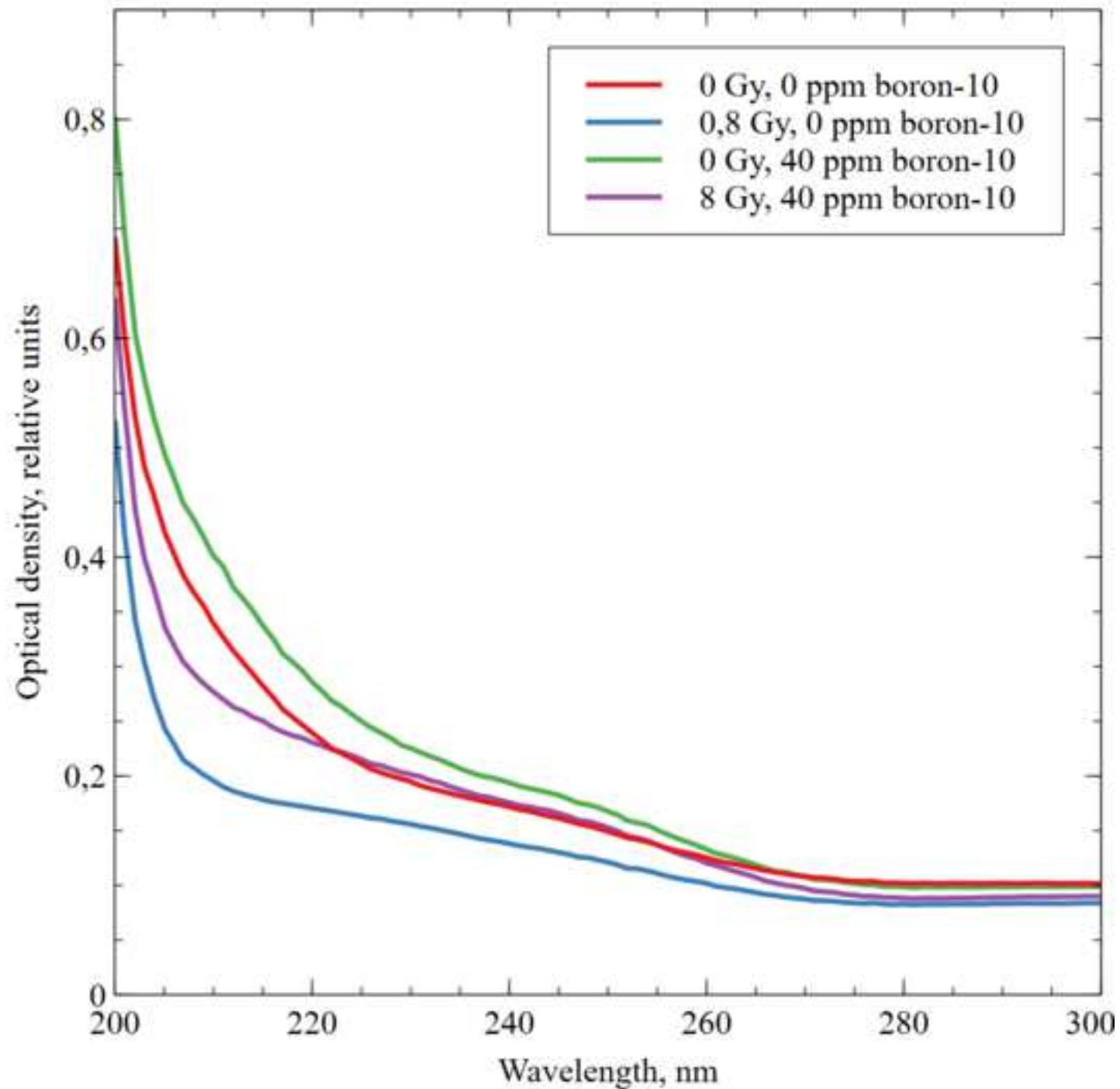


Figure 8

[Click here to access/download;Figure;Fig_8.png](#)

Figure 2

[Click here to access/download;Figure;Fig_2.jpg](#)

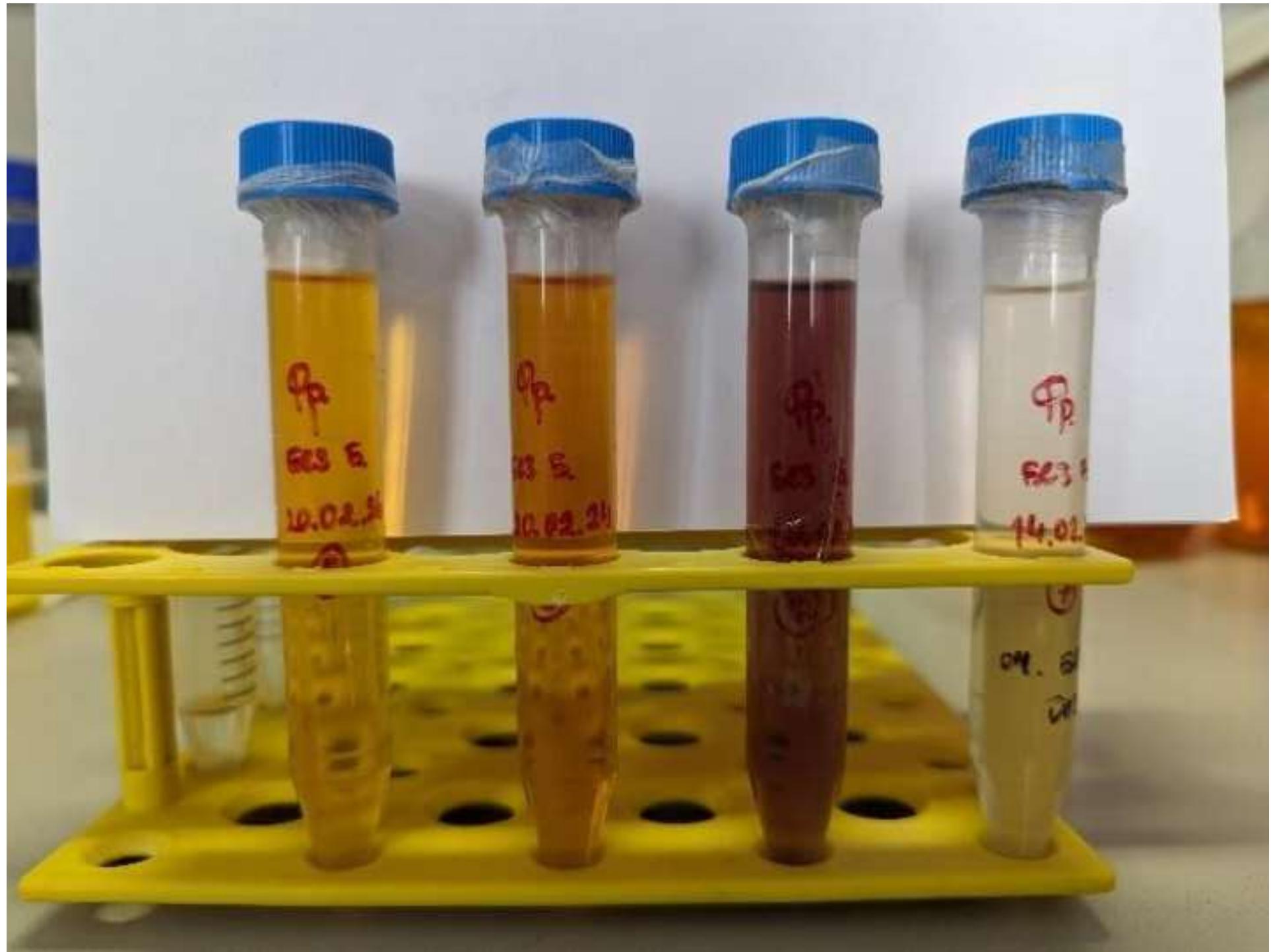


Figure 3

[Click here to access/download;Figure;Fig_3.png](#)

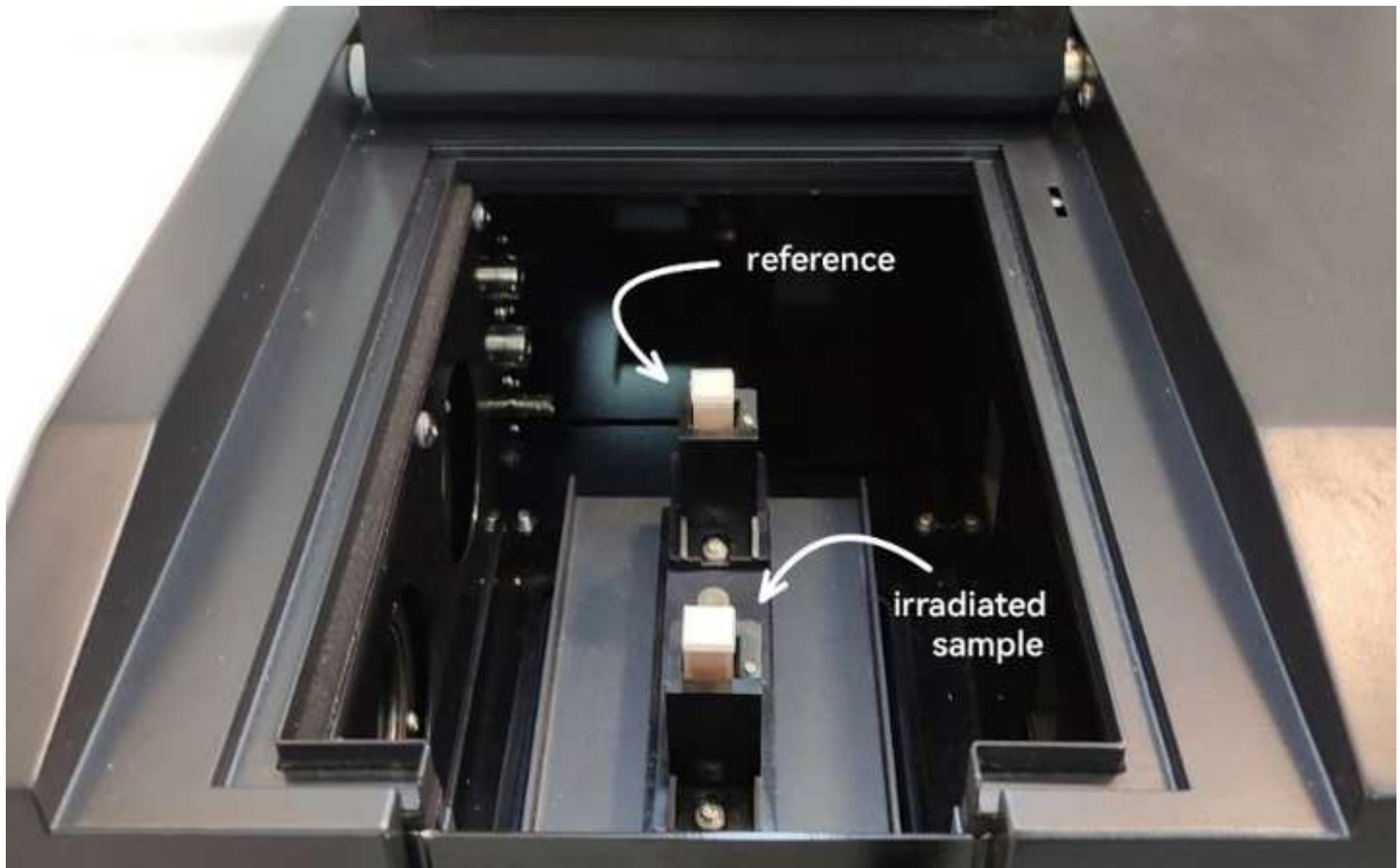


Figure 5

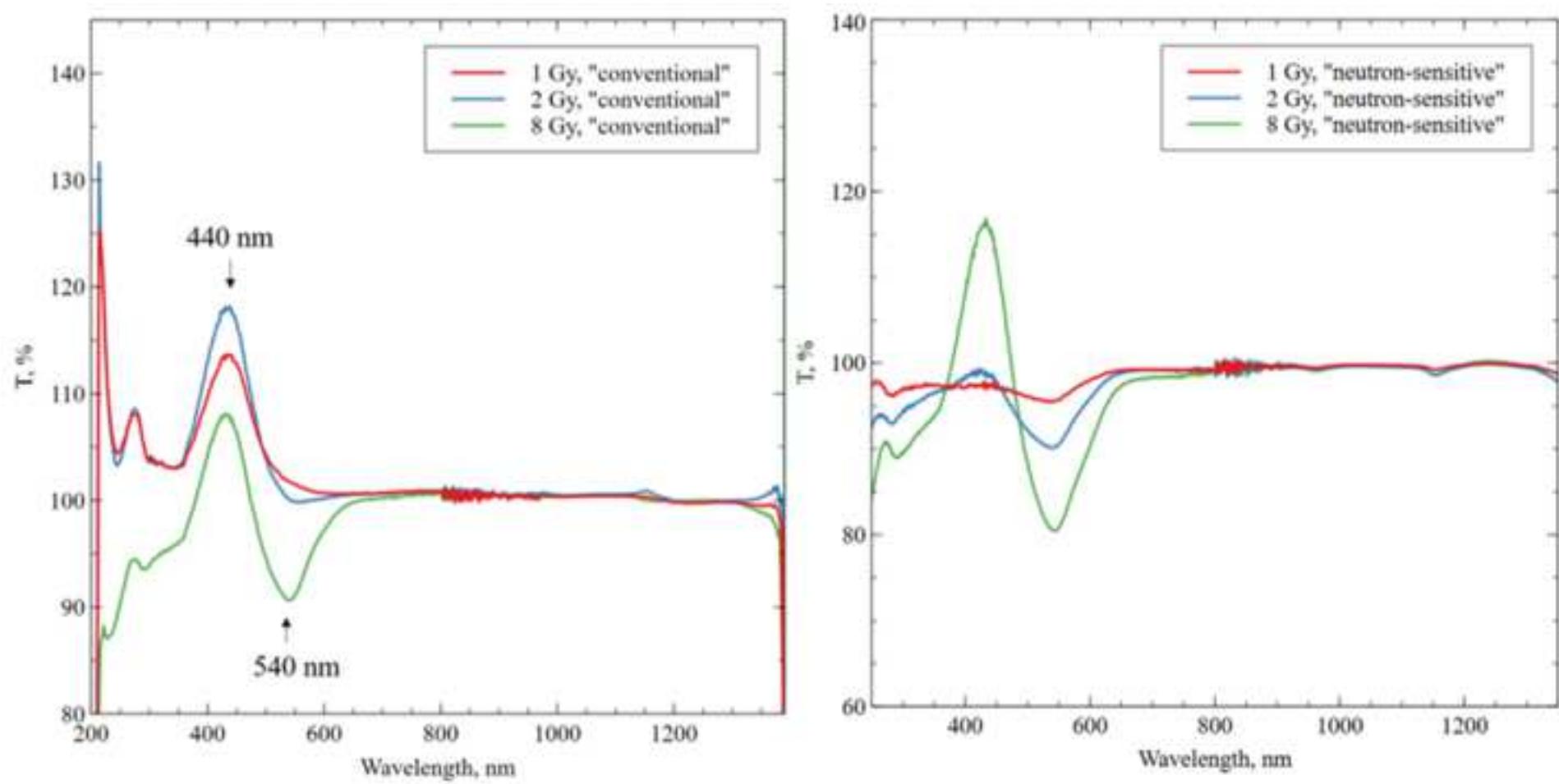
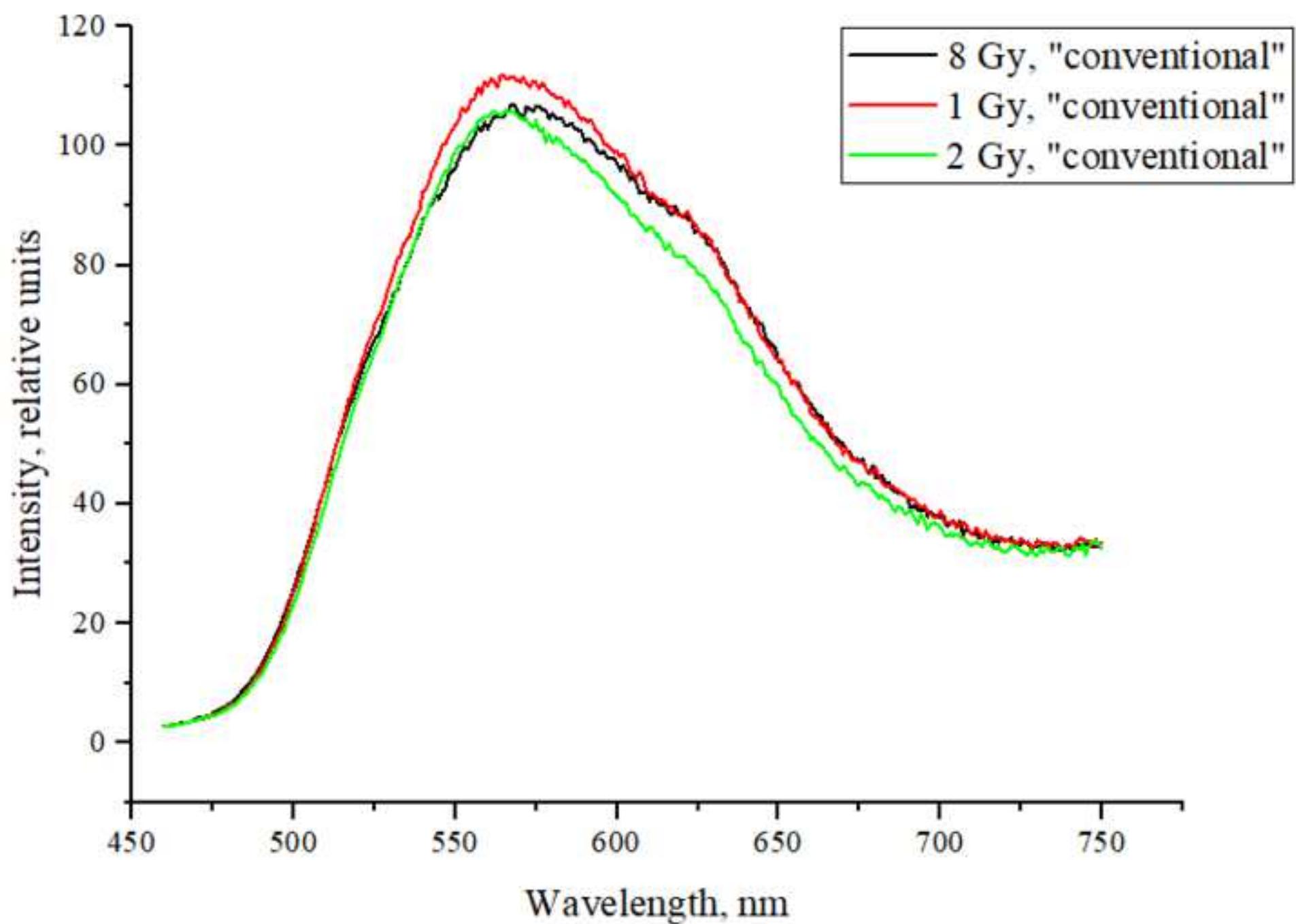


[Click here to access/download;Figure;Fig_5.png](#)

Figure 6

[Click here to access/download;Figure;Fig_6.png](#)

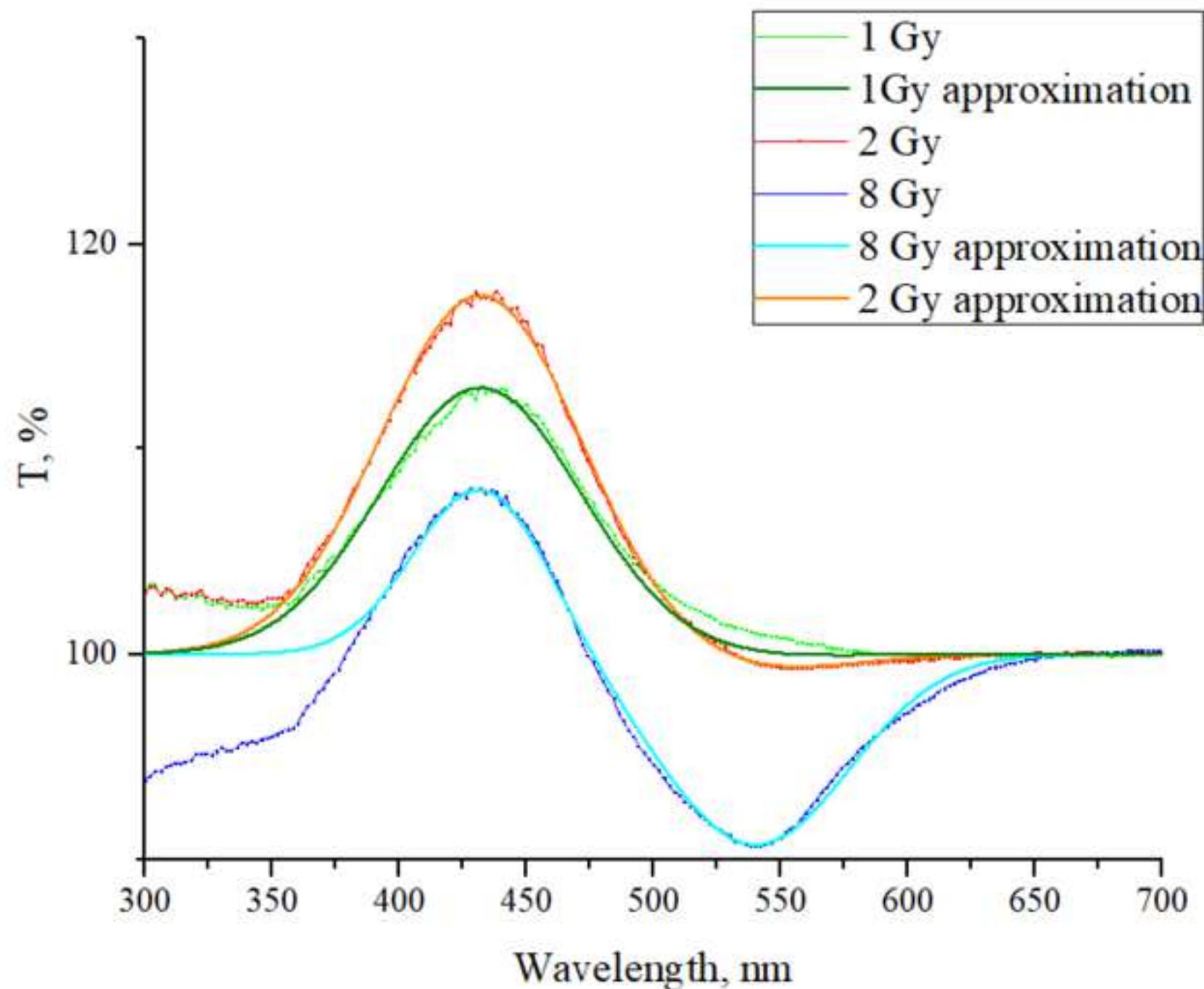


Figure 11

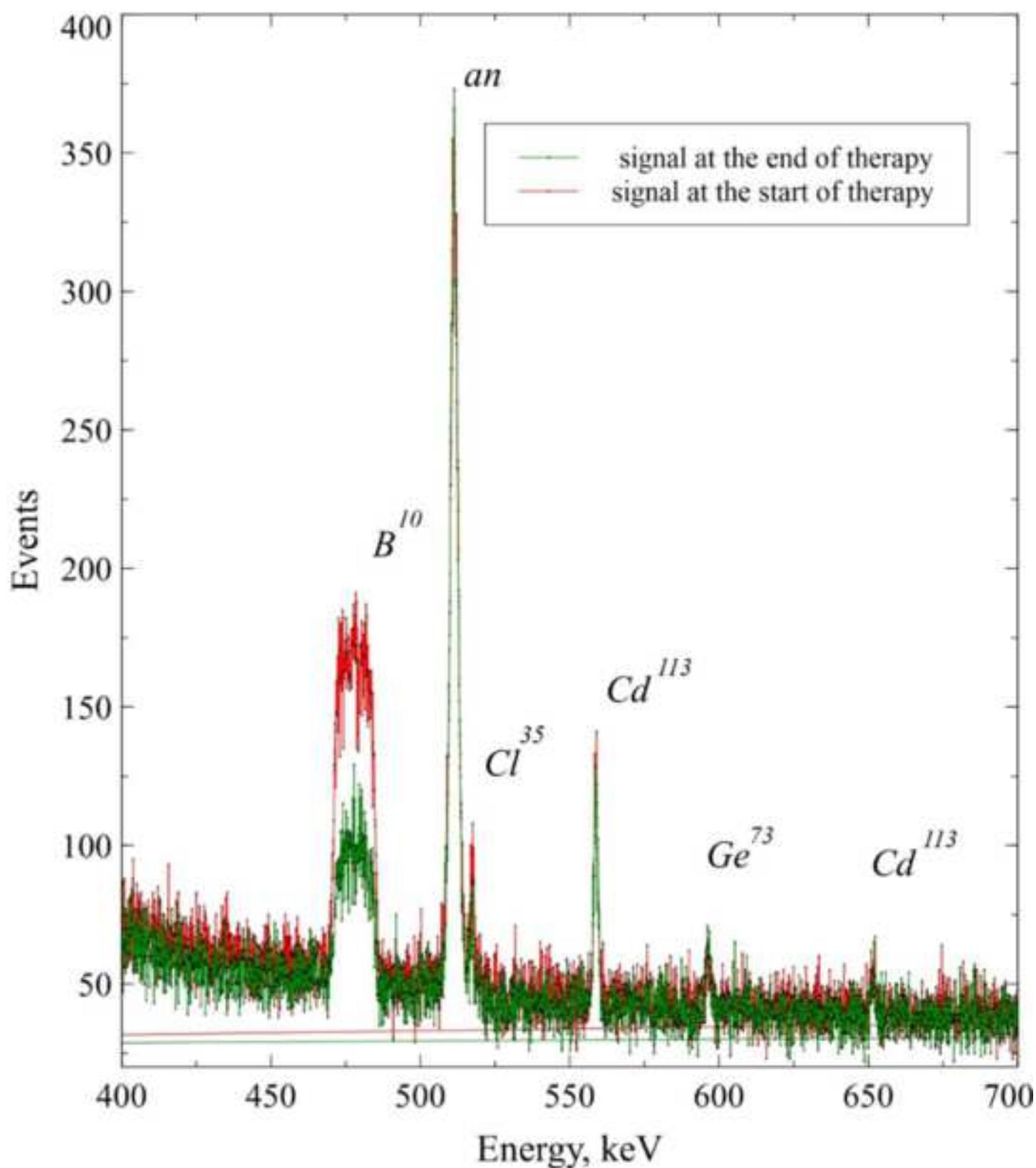
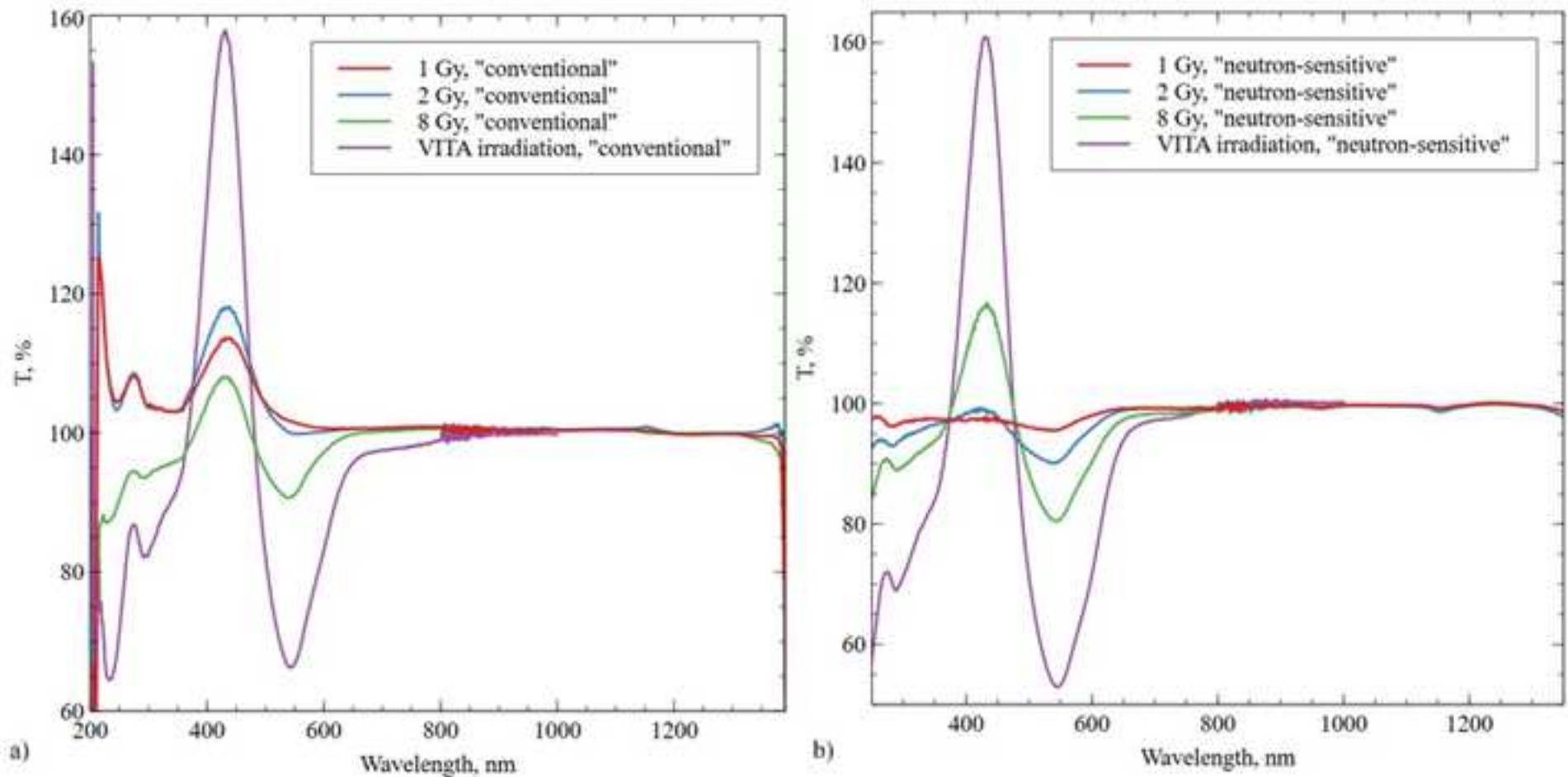


[Click here to access/download;Figure;Fig_11.png](#)

Figure 9

[Click here to access/download;Figure;Fig_9.jpg](#)

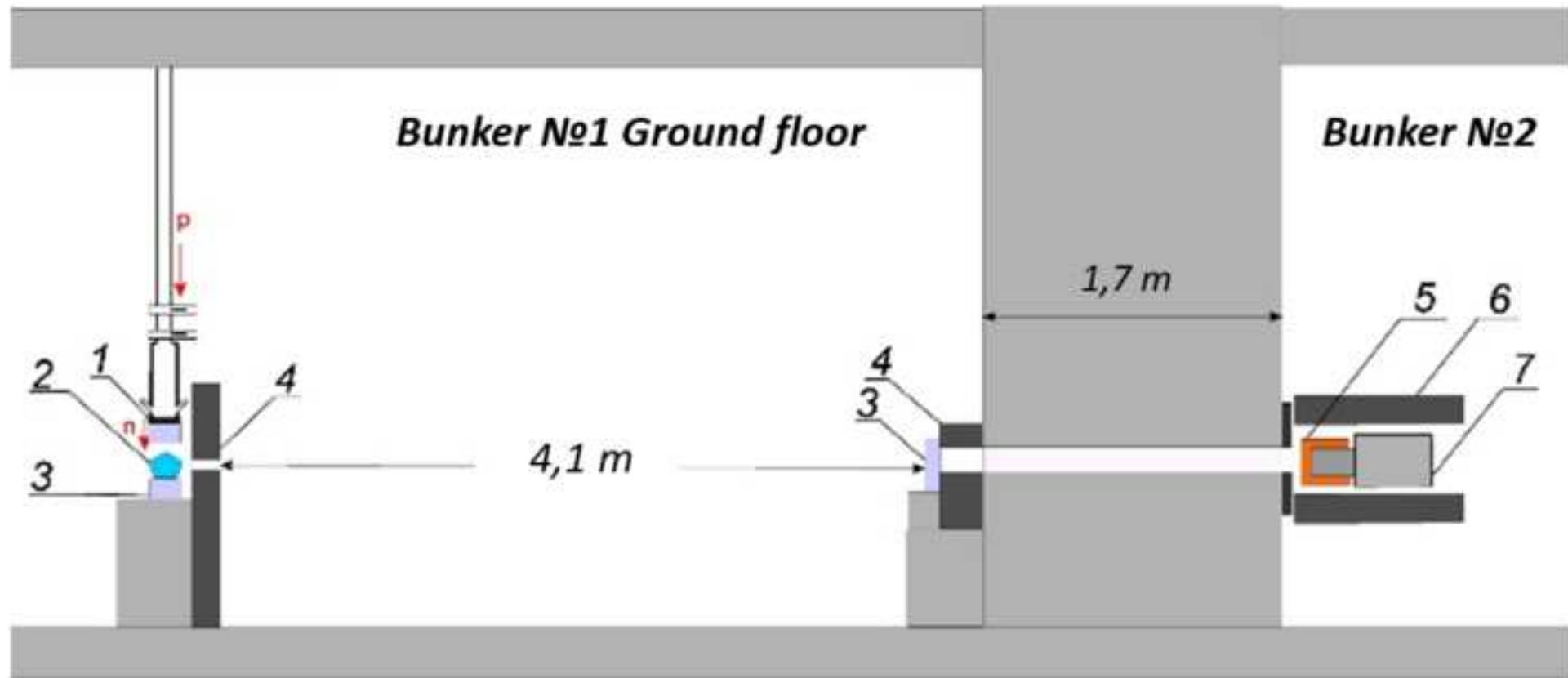


Fig. 1. Absorption spectrum of dosimeters

Fig. 2. Irradiated "conventional" Fricke dosimeters: Dose increases from left to right (far left – unirradiated, far right – 1000 Gy)

Fig. 3. Photo of dosimeter placement for calibration using a ^{137}Cs source

Fig. 4. Arrangement of cuvettes in the Shimadzu UV-3600 Plus spectrophotometer (reference – unirradiated sample)

Fig. 5. Absorption spectra of irradiated "conventional" and "neutron-sensitive" Fricke dosimeters

Fig. 6. Fluorescence spectra of dosimeters excited at 440 nm

Fig. 7. Approximation of the obtained absorption spectra of "conventional" dosimeters

Fig. 8. Calibration of dosimeters using a ^{137}Cs source

Fig 9. Absorption spectra of dosimeters irradiated at the VITA accelerator compared with ^{137}Cs -irradiated samples: a) "conventional" dosimeter, b) "neutron-sensitive" dosimeter

Fig. 10. Experimental setup for boron dose measurement using prompt gamma-ray spectrometry: 1 – lithium target, 2 – animal, 3 – plexiglas, 4 – lead shielding, 5 – cadmium layer, 6 – lead collimator, 7 – gamma-ray spectrometer

Fig 11. Gamma-ray spectrum obtained during BNCT of a laboratory animal

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: