Магнитные системы ускорителей

И.А.Кооп, кафедра физики ускорителей НГУ

1. Уравнения электромагнитного поля. Единицы измерений.

На практике часто приходится пользоваться как Гауссовой системой единиц CGS так и международной системой единиц SI, поэтому в Таблице 1 основные сведения по электродинамике приведены для обеих этих систем.

Таблица 1. Основные сведения по электродинамике.

Таблица 1. Основные сведения по электродинамике.				
Величина	Гауссова система единиц CGS	Система единиц SI		
Скорость света, c	2.99792458×10 ¹⁰ см/с	$2.99792458 \times 10^{8} \ \text{m/c}$		
3аряд, q	$2.99792458 \times 10^9 \ CGS - e \partial$.	$=1 K\pi = 1 A c$		
Потенциал, V	$1/299.792458 \ CGS - e\partial$.	=1 B = 1 Джс/Кл		
Магнитное поле	$10^4 \Gamma c = 10^4 \partial u H / CGS - e \partial$.	$=1T=1HA^{-1}M^{-1}$		
Сила Лоренца	$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$ $\nabla \cdot \mathbf{D} = 4\pi \rho$	$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$		
Уравнения	$\nabla \cdot \mathbf{D} = 4\pi \rho$	$\nabla \cdot \mathbf{D} = \rho$		
Максвелла	$\nabla \times \mathbf{H} - \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} = \frac{4\pi}{c} \mathbf{j}$	$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{j}$		
	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$		
	$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$ $\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}, \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M}$	$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$		
	$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}, \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M}$	$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}, \mathbf{H} = \mathbf{B} / \mu_0 - \mathbf{M}$		
Линейные среды	$\mathbf{D} = \varepsilon \mathbf{E}, \mathbf{H} = \mathbf{B} / \mu$	$\mathbf{D} = \varepsilon \mathbf{E}, \mathbf{H} = \mathbf{B}/\mu, \mu = \mu_r \mu_0$		
Магнитная				
проницаемость	1	$\mu_0 = 4\pi \times 10^{-7} \ H \ A^{-2}$		
вакуума:				
Диэлектрическая проницаемость	1	$\varepsilon_0 = 1/\mu_0 c^2 =$		
вакуума:	1	$= 8.854187817 \times 10^{-7} \Phi/M$		
Выражения для полей через	$\mathbf{E} = -\nabla V - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$	$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$		
потенциалы:	$\mathbf{B} = \nabla \times \mathbf{A}$	$\mathbf{B} = \nabla \times \mathbf{A}$		
Связь статических полей с	$V = \sum_{i} \frac{q_{i}}{r_{i}} = \int \frac{\rho(\mathbf{r'})}{ \mathbf{r} - \mathbf{r'} } d^{3}x'$	$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i} = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r'})}{ \mathbf{r} - \mathbf{r'} } d^3x'$		
потенциалами в Кулоновской калибровке:	$\mathbf{A} = \frac{1}{c} \oint \frac{Id\mathbf{l}}{ \mathbf{r} - \mathbf{r}' } = \frac{1}{c} \int \frac{\mathbf{j}(\mathbf{r}')}{ \mathbf{r} - \mathbf{r}' } d^3 x'$	$\mathbf{A} = \frac{\mu_0}{4\pi} \oint \frac{Id\mathbf{l}}{ \mathbf{r} - \mathbf{r'} } = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r'})}{ \mathbf{r} - \mathbf{r'} } d^3x'$		

Преобразования полей из системы отсчета K в систему отсчета K' (\mathbf{v} скорость K' относительно K)	$\mathbf{E}_{\parallel}' = \mathbf{E}_{\parallel}$ $\mathbf{E}_{\perp}' = \gamma \left(\mathbf{E}_{\perp} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$	$\mathbf{E}_{\parallel}^{'} = \mathbf{E}_{\parallel}$ $\mathbf{E}_{\perp}^{'} = \gamma (\mathbf{E}_{\perp} + \mathbf{v} \times \mathbf{B})$ $\mathbf{B}_{\parallel}^{'} = \mathbf{B}_{\parallel}$
	$\mathbf{B}_{\parallel} = \mathbf{B}_{\parallel}$ $\mathbf{B}_{\perp} = \gamma \left(\mathbf{B}_{\perp} - \frac{\mathbf{v}}{c} \times \mathbf{E} \right)$	$\mathbf{B}_{\perp} = \gamma \left(\mathbf{B}_{\perp} - \frac{\mathbf{v}}{c^2} \times \mathbf{E} \right)$

Уравнения магнитостатики имеют вид:

$$rot \mathbf{H} = \frac{4\pi}{c} \mathbf{j}$$

$$div \mathbf{B} = 0$$

$$\mathbf{B} = \mu(B) \cdot \mathbf{H}$$
(1.1)

2. Мультипольные разложения двумерных полей

Магнитные или электрические поля зависящие только от двух координат x,y и не зависящие от третьей координаты s в некоторой Декартовой системе координат (x,y,s), удобно описывать комплексным скалярным потенциалом W(z), или же эквивалентно третьей компонентой $A_s(z)$ векторного потенциала. Будем для определенности всегда говорить о скалярном потенциале.

Как известно, произвольная аналитическая функция комплексной переменной $z = x + iy = re^{i\alpha}$ удовлетворяет двумерному уравнению Лапласа:

$$\Delta_2 \mathbf{W}(\mathbf{z}) = 0 \tag{1.2}$$

где

$$\Delta_2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \alpha^2}.$$

Как реальная, так и мнимая части W(z), также удовлетворяющие уравнению Лапласа, с равным успехом могут быть использованы для описания полей в вакууме. И если, скажем, уравнение:

$$Im W(z) = const$$

есть уравнение эквипотенциальной кривой, то аналогичное уравнение:

Re
$$W(z) = const$$

описывает форму силовой линии и наоборот.

Произвольное двумерное поле вне токовой области может быть разложено в ряд по степеням z:

$$W(z) = \sum_{n=0}^{\infty} c_n z^n$$

где $c_n = |c_n| e^{i\phi_n}$ - коэффициенты разложения по мультиполям. Модуль c_n связан с амплитудой G_n 2n-мультиполя (n=1 –диполь, n=2 – квадруполь, n=3 – секступоль и т.д.):

$$|c_n| = G_n/n!$$

а фаза ϕ_n задает угол поворота мультиполя относительно оси x системы координат. Если фазы $\phi_n=0$, то мнимая часть комплексного потенциала описывает поле прямо стоящего мультиполя, а реальная часть соответствует мультиполю повернутому вокруг оси s на угол $\pi/2n$. Для данного случая часто используется термин skew-мультиполь. Выпишем выражения для этих потенциалов как в Декартовой так и в полярной системе координат.

$$\begin{split} W_n &= \Psi_n + i\Phi_n = \frac{G_n}{n!} z^n = \frac{G_n}{n!} (x + iy)^n = \frac{G_n}{n!} r^n e^{in\alpha} \\ \Phi_n &= \frac{G_n}{n!} \operatorname{Im} \left(\sum_{m=0}^n C_n^m x^{n-m} (iy)^m \right) = \frac{G_n}{n!} r^n \sin(n\alpha) \\ \Psi_n &= \frac{G_n}{n!} \operatorname{Re} \left(\sum_{m=0}^n C_n^m x^{n-m} (iy)^m \right) = \frac{G_n}{n!} r^n \cos(n\alpha) \end{split}$$

Выпишем также компоненты поля в полярных координатах. Они, как и потенциалы, имеют гармоническую зависимость от угла α :

$$B_{r} = \frac{G_{n}}{(n-1)!} r^{n-1} \sin(n\alpha)$$

$$B_{\alpha} = \frac{G_{n}}{(n-1)!} r^{n-1} \cos(n\alpha)$$

Таким образом, разложение двумерного поля по мультиполям является степенным по радиусу r и гармоническим по углу α , причем показатель степенной зависимости потенциала от r совпадает c номером гармоники угловой зависимости.

3. Краевые поля магнитов

Двумерная картина полей претерпевает довольно большие изменения на торцах магнитов. Интуитивно ясно, что в нулевом приближении поле 2n-мультиполя на краю магнита попрежнему описывается тем же двумерным комплексным потенциалом, но теперь градиент поля уже должен зависеть от продольной координаты s:

$$W_{n,0}(z,s) = G_n(s) \cdot \frac{z^n}{n!}$$

Но поскольку такой вид потенциала явно не удовлетворяет трехмерному уравнению Лапласа, то должны появиться дополнительные члены с более высокой степенью z, которые исправят ситуацию. Перейдем к построению таких недостающих членов, зануляющих трехмерный Лапласиан.

Сделаем формальную замену переменных:

$$z = x + iy$$
$$\overline{z} = x - iy$$

Обратное преобразование:

$$x = \frac{1}{2}(z + \overline{z})$$

$$y = \frac{i}{2}(\overline{z} - z)$$

В переменных z, \overline{z} двумерная часть оператора Лапласа запишется в виде:

$$\Delta_2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$$

Отсюда следует, что чисто двумерные поля должны описываться комплексной функцией только одной переменной: либо z, либо \overline{z} , чтобы автоматически происходило зануление смешанной производной. Итак, трехмерный оператор Лапласа можно представить в виде:

$$\Delta = 4 \frac{\partial^2}{\partial z \partial \overline{z}} + \frac{\partial^2}{\partial s^2}$$

Будем теперь искать комплексный потенциал в виде степенного разложения, включающего помимо z еще и степени \overline{z} :

$$W_{n}(z,\overline{z},s) = \sum_{m=0}^{\infty} W_{n,m}(s) \frac{z^{n+m}\overline{z}^{m}}{(n+m)!m!}$$

Каждый член данной суммы является n-ой гармоникой угла α , но теперь смешанная производная потенциала по z и \overline{z} не обращается s нуль (при m>0) и, следовательно, двумерная часть Лапласиана может, s принципе, скомпенсировать ненулевую вторую производную по s.

Итак, потребуем выполнения условия:

$$\Delta W(z, \overline{z}, s) = 0$$

Проведя дифференцирования по z, \overline{z} , s, и сгруппировав подобные члены, получим следующее рекуррентное соотношение:

$$W_{n,m}(s) = -\frac{1}{4}W_{n,m-1}^{(")}(s)$$
 $m = 1, 2, ..., \infty$

Или же:

$$W_{n,m}(s) = \frac{(-1)^m}{4^m} W^{(2m)}_{n,0}(s)$$

Итак, комплексный потенциал 2n-го мультиполя на краю магнита можно представить в виде степенного разложения по степеням z, \overline{z} , с коэффициентами $G^{(2m)}(s)$, являющимися четными производными по s от низшего мультипольного градиента $G(s) \equiv G^{(0)}(s)$:

$$W_{_{n}}(z,\overline{z},s) = \sum_{_{m=0}}^{^{\infty}} G^{^{(2m)}}(s) \frac{(-1)^{^{m}} z^{^{n+m}} \overline{z}^{^{m}}}{4^{^{m}}(n+m)! m!} = \sum_{_{m=0}}^{^{\infty}} G^{^{(2m)}}(s) \frac{(-1)^{^{m}} r^{^{n+2m}} e^{in\alpha}}{4^{^{m}}(n+m)! m!}$$

Последний вариант записи потенциала явно показывает, что, как и в двумерном случае, потенциал является гармонической функцией угла α , с номером гармоники n.

На краю магнита, в местах, где четные производные по s от основного градиента отличны от нуля, добавляются дополнительные члены ряда, содержащие более высокие степени r, а именно степени r^{n+2m} .

Произвольное трехмерное поле прямолинейного магнита естественно может быть представлено в виде суперпозиции бесконечного числа гармонических мультиполей, приведенного выше вида.

а. Краевое поле дипольного магнита с косинусными обмотками.

Сверхпроводящие дипольные магниты ускорителей на высокую энергию (TEVATRON, HERA, RHIC, LHC) сделаны по технологии магнитов с косинусными обмотками. Зависимость плотности тока в таких обмотках от угла α близка к гармонической:

$$\mathbf{j}(\alpha) = \mathbf{j}_0 \cdot \cos(\mathbf{n}\alpha)$$

Поэтому естественно ожидать, что и поле, как в среднем сечении так и на краях такого магнита, сохраняет гармоническую зависимость.

Положив в полученных выше формулах n=1 и взяв мнимую часть комплексного потенциала, получим для потенциалов и полей диполя следующие выражения:

$$\begin{split} W(z,\overline{z},s) &= B(s) \cdot z - B''(s) \frac{z^2 \overline{z}}{4 \cdot 2!} + B''''(s) \frac{z^3 \overline{z}^2}{4^2 \cdot 3! \cdot 2!} - \dots \\ \Phi(x,y,s) &= B(s) y - B''(s) \frac{y(x^2 + y^2)}{4 \cdot 2!} + B''''(s) \frac{y(x^2 + y^2)^2}{4^2 \cdot 3! \cdot 2!} - \dots \\ B_x(x,y,s) &= -B''(s) \frac{xy}{4} + B''''(s) \frac{xy(x^2 + y^2)}{48} - \dots \\ B_y(x,y,s) &= B(s) - B''(s) \frac{x^2 + 3y^2}{8} + B''''(s) \frac{x^4 + 6x^2y^2 + 5y^4}{192} - \dots \\ B_s(x,y,s) &= B'(s) y - B'''(s) \frac{y(x^2 + y^2)}{8} + B'''''(s) \frac{y(x^2 + y^2)^2}{192} - \dots \end{split}$$

Необходимо отметить появление продольной компоненты краевого магнитного поля. В первом приближении ее величина пропорциональна первой производной поля на оси и вертикальной координате у. Как известно, именно наличие продольной компоненты "вываливающегося" поля обеспечивает краевую фокусировку магнитов с косыми краями.

В полярных поперечных координатах все выражения выглядят несколько проще и имеют более наглядную физическую интерпретацию:

$$\begin{split} &\Phi(r,\alpha,s) = \sin(\alpha) \left(B(s)r - B''(s) \frac{r^3}{8} + B''''(s) \frac{r^5}{192} - \dots \right) \\ &B_r(r,\alpha,s) = \sin(\alpha) \left(B(s) - B''(s) \frac{3r^2}{8} + B''''(s) \frac{5r^4}{192} - \dots \right) \\ &B_\alpha(r,\alpha,s) = \cos(\alpha) \left(B(s) - B''(s) \frac{r^2}{8} + B''''(s) \frac{r^4}{192} - \dots \right) \\ &B_s(r,\alpha,s) = \sin(\alpha) \left(B'(s)r - B'''(s) \frac{r^3}{8} + B'''''(s) \frac{r^5}{192} - \dots \right) \end{split}$$

б. Краевое поле дипольного магнита с однородным полем.

Представление краевого поля в виде суперпозиции гармоник не всегда удобно при анализе движения частиц.

Таким примером может служить магнит с не зависящим от х-координаты вертикальным полем.

Предположим, что край магнита с плоскими полюсами настолько широк, что его потенциал и сами компоненты поля не зависят от горизонтальной координаты х. В таком случае рационально использовать разложение скалярного потенциала по нечетным степеням у:

$$\Phi(y,s) = \sum_{m=0}^{\infty} C_{2m+1}(s) \frac{y^{2m+1}}{(2m+1)!}$$

Подставляя это разложение в двумерное уравнение Лапласа:

$$\frac{\partial^2 \Phi}{\partial v^2} + \frac{\partial^2 \Phi}{\partial s^2} = 0$$

и приводя подобные члены с одинаковыми степенями у, получим:

$$C_{2m+1}(s) = -C''_{2m-1}(s)$$

Таким образом, потенциал и две компоненты краевого поля магнита с широкими полюсами имеют следующий вид:

$$\begin{split} &\Phi(y,s) = \sum_{m=0}^{\infty} (-1)^m B^{(2m)}(s) \frac{y^{2m+1}}{(2m+1)!} = B(s)y - B''(s) \frac{y^3}{6} + B''''(s) \frac{y^5}{120} - ... \\ &B_y(s) = B(s) - B''(s) \frac{y^2}{2} + B''''(s) \frac{y^4}{24} - ... \\ &B_s(s) = B'(s)y - B'''(s) \frac{y^3}{6} + B'''''(s) \frac{y^5}{120} - ... \end{split}$$

Нетрудно видеть, что такое разложение представляет собой суперпозицию бесконечного числа гармоник. Действительно, подстановка $y = r \cdot \sin(\alpha)$ позволяет переписать полученные выше формулы в виде ряда по гармоникам α . Далеко от края магнита мы имеем только первую гармонику, а в области спада или нарастания поля имеем все нечетные гармоники угла α .

Ясно, что в рассмотренном выше примере, представление полей в виде ряда по степеням у проще и удобнее чем разложение по гармоникам α. Такое представление в явном виде отражает отсутствие зависимости полей от координаты х. Подробный анализ показал, что приведенное в данном примере представление краевого поля значительно лучше отражает картину поля во всех не косинусных дипольных магнитах, чем представление через одну первую гармонику.

4. Примеры магнитов с водоохлаждаемыми обмотками.

Общий вид фокусирующей линзы триплета накопительного кольца ВЭПП-2000 представлен на рис.1. Основные расчётные параметры приведены в Таблице 1.

Таблица 1. Параметры линзы накопительного кольца ВЭПП-2000.

Градиент поля	5 кГс/см
Магнитная длина	190 мм
Диаметр вписанной окружности	40 мм
Количество витков основной обмотки	29
Номинальный ток	280 A
Напряжение	14.6 B
Мощность потерь	4 кВт
Количество витков обмотки коррекции	400
Номинальный ток обмотки коррекции	4 A

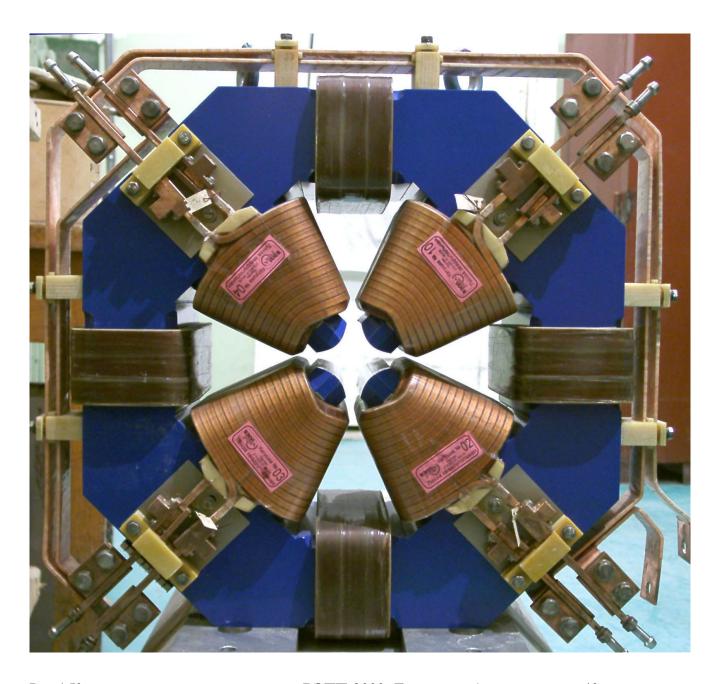
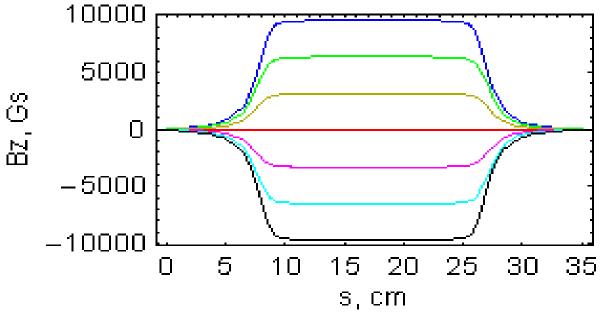


Рис. 1 Квадрупольная линза накопителя ВЭПП-2000. Диаметр рабочей апертуры 40 мм.

Магнитные измерения проводились на специальном стенде. Магнитное поле линзы определялось линейкой датчиков Холла. Медная каретка с наклеенными на неё семью датчиками протаскивалась шаговым двигателем вдоль оси линзы. При этом датчики располагались в горизонтальной плоскости, образуя горизонтальную линейку, перпендикулярную оси линзы. Положение датчиков на каретке было определено ранее с точностью не хуже $0.01\,$ мм. Для передвижения каретки строго по оси линзы была изготовлена направляющая в виде закрытого жёлоба, которая закреплялась на полюсах линзы. Таким образом, в результате измерений можно было получить зависимость вертикальной компоненты магнитного поля B_y от горизонтальной координаты x для



любого значения продольной координаты s.

Предварительно датчики Холла были прокалиброваны в дипольном магните с однородным вертикальным полем с помощью ЯМР датчика. Кроме того, перед каждой серией измерений определялись значения тока датчиков Холла при нулевом магнитном поле. Для этой цели каретка помещалась в пермаллоевый экран, исключающий внешнее магнитное поле. Данные калибровки, а также «нули» датчиков в виде файлов использовались управляющей программой HALL.

Программа управляла как источником тока, питающим линзу, так и шаговым двигателем, а также собирала и обрабатывала данные с датчиков Холла. Для каждой линзы было проведено несколько измерений для различных величин тока обмотки. Значения полей семи датчиков с шагом по продольной оси 5 мм записывались в файл для дальнейшей обработки. Примером обработанного файла может служить рис.2.

Рис. 2. Зависимость магнитного поля, измеряемого семью датчиками, от продольной координаты. Ток в обмотках $I = 280 \ A$.

Для уменьшения значения нелинейности (в основном это додекаполь, т.е. 12-полюсник) было предложено доработать линзу снятием дополнительной фаски (см. фаска 2 на рис.3). Выбранный вариант доработки полюсов линзы позволит подавить нелинейные поправки примерно в 10 раз. Однако новая фаска неизбежно укоротит эффективную длину линзы, что приведёт к снижению интеграла градиента. Для компенсации этого эффекта необходимо увеличить ток в обмотках линзы, расчёт даёт для обеспечения указанного выше интеграла градиента значение тока равное $I = 350 \ A$. Это приведёт к увеличению потребляемой мошности до $W = 6 \ \mathrm{kBt}$.

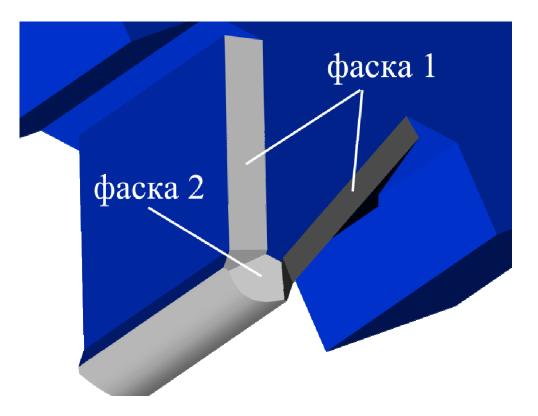


Рис. 3. Полюс линзы с двумя фасками.

Рис.4 Магнитопроводы дипольных магнитов ВЭПП-2000 в экспериментальном

производстве ИЯФа.

Рис.5 Дипольный магнит ВЭПП-2000 в сборе.

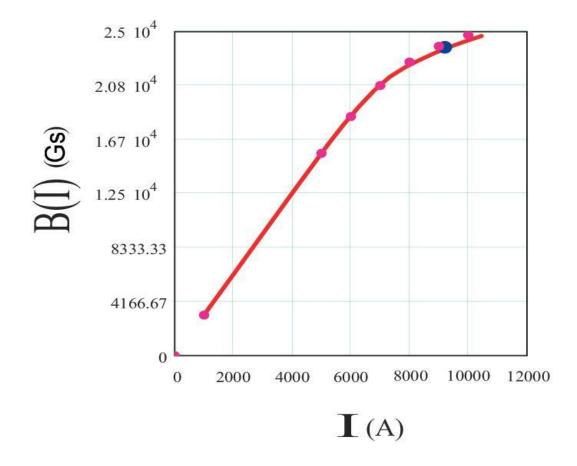


Рис.5 Зависимость поля в межполюсном зазоре магнита ВЭПП-2000 от тока в обмотке.

Таб. 2. Основные характеристики магнита ВЭПП-2000

Угол поворота	45°
Радиус поворота	140 см
Зазор между полюсами	40 мм
Максимальное поле	24.60 κΓc
Максимальный ток	10 кА
Число витков в обмотке	5
Стабильность поля	≤ 0.001