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I INTRODUCTION

The objective of this lecture is to give a survey of the tools needed for linear lattice
analysis. Although known for a long time [1] and widely available in textbooks, e.g.
[2–6], linear beam dynamics presented in an entire view may be useful in the framework
of this School to provide reference material for subsequent lectures and tutorial courses.

Among different formulations of the betatron motion theory, we prefer the complex
Floquet function formalism [2], and the examples of linear and nonlinear dynamics prob-
lems presented below are intended to illustrate its efficiency.

II EQUATIONS OF MOTION

We consider the design orbit in a circular accelerator as a closed planar curve made
up of arcs, each with a constant radius of curvature r0. Each bend in the orbit is caused
by a sector magnet, see Fig. 1a. The cylindrical coordinates r, θ, z are applied in each
sector magnet (Fig. 1b), and its magnetic field B = (Br, Bθ, Bz) is two-dimensional:

Bθ = 0,
∂Br,z

∂θ
= 0.

We start with the relativistic equation of motion in the horizontal plane

γmr̈ = γm
v2
θ

r
+
e

c
Bzvθ (1)

with the centrifugal and Lorentz forces on the right side. Here e and m are the particle’s
charge and mass, v = (vr, vθ, vz) is its velocity, c is the speed of light, β = v/c and
γ = (1 − v2/c2)−1/2 are the relativistic factors. On the design orbit the vertical field B0

is related to the nominal momentum p0,

p0c = γ0β0mc
2 = −eB0r0, (2)

where the subscript zero indicates nominal particle parameters. Consider a particle’s
trajectory in a neighborhood close to the design orbit and use the development around
the design orbit

vz,r � vθ ≈ β0c, x = r − r0 � r0 .
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FIGURE 1. a) Design orbit formed by sector magnets; b) accelerator coordinates x, z describe particle

trajectories using the design orbit as a reference.

Instead of equations of motion it is convenient to use equations of trajectories, changing
the independent variable in Eq. (1) from time t to the path s along the design orbit,
ds = vθdt ≈ v0dt,

r′′ =
1

r
+

eBz

γβmc2
, (3)

where the prime indicates the derivative over s. Development to first order on the right
side of Eq. (3), taking account of the particle’s momentum offset p = p0 + Δp, and
relation (2) yields

1

r0 + x
+
e (B0 + ∂Bz/∂r x+ . . .)

γ0β0mc2(1 + Δp/p0)
≈ − x

r2
0

+
e

p0c

∂Bz

∂r
x+

1

r0

Δp

p
.

Thus we have obtained the linearized equation of horizontal motion,

x′′ +Kxx =
1

r0

Δp

p
, (4)

with the horizontal focusing function Kx in terms of the orbit curvature, and the guide
field gradient calculated on the design orbit,

Kx =
1

r2
0

− e

p0c

∂Bz

∂r
. (5)

Similar development for the equation of vertical motion

γmz̈ = −e
c
Brvθ ,

taking account of

Br = 0 +
∂Br

∂z
z + . . . ≈ ∂Bz

∂r
z, (rotB)θ =

∂Br

∂z
− ∂Bz

∂r
= 0,



yields the linearized equation of vertical motion

z′′ +Kzz = 0, (6)

where Kz is the vertical focusing function,

Kz =
e

p0c

∂Bz

∂r
. (7)

A Dispersion

Consider a closed trajectory for an off-momentum particle with p = p0 +Δp, and call
it the off-momentum orbit.

r0

design orbit off-momentum orbitxp

FIGURE 2. Deviation xp of the closed orbit for off-momentum particles from the design orbit.

This orbit deviates from the design orbit by xp, as shown in Fig. 2,

xp = Dx
Δp

p
(8)

where Dx is called the (horizontal) dispersion. It should to be found, after substituting
Eq. (8) into Eq. (4), as a periodic particular solution of the linearized horizontal equation,

D′′
x +KxDx =

1

r0
, (9)

where the focusing function Kx(s) and the design orbit curvature radius r0(s) are peri-
odic functions with the period C0 of the design orbit circumference.

Dispersion results in first-order path lengthening along the off-momentum orbit,

ds

(
1 +

Dx

r0

Δp

p

)
− ds =

Dx

r0

Δp

p
ds. (10)

Integration of Eq. (10) around the machine gives for the off-momentum orbit circumfer-
ence C,

C − C0 = ΔC =
Δp

p

∮ Dx

r0
ds ≡ αpC0

Δp

p
, (11)



where we introduced the momentum compaction factor

αp =
1

C0

∮
Dx

r0
ds .

In modern strong-focusing machines αp � 1 (a simple estimate is αp ≈ 1/Q2
x, where

Qx is the horizontal betatron oscillation tune).
For the off-momentum particle revolution period T we take into account both the off-

momentum orbit lengthening, Eq. (11), and the deviation of the off-momentum velocity
β = β0 + Δβ from the nominal one,

T =
C

βc
=
C0(1 + ΔC/C0)

β0(1 + Δβ/β0)
≈ T0

(
1 +

ΔC

C
− Δβ

β

)
. (12)

Using the momentum compaction αp and relating the particle’s velocity to its momen-
tum,

Δp

p
=

Δ(γmv)

p
=

1

γmv
Δ

⎛
⎝ mv√

1 − v2/c2

⎞
⎠ = γ2 Δv

v
,

we can express the deviation of the revolution frequency ω0 for the off-momentum par-
ticle from Eq. (12),

Δω0

ω0
= −T − T0

T0
= −

(
αp − 1

γ2

)
Δp

p
≡ η

Δp

p
,

where we defined the slippage factor η, which plays an essential role in the longitudinal
dynamics of particles, considered elsewhere [4].

We deal hereafter only with the transverse motion of on-momentum particles.

III HILL’S EQUATION

Modern focusing systems of circular accelerators are composed of complicated com-
binations of focusing magnets. To reveal the general properties of the transverse motion,
we need to study first the linearized equations with variable focusing functions K(s),

x′′ +K(s) x = 0, (13)

with the single restriction that this function is apparently periodic with the machine orbit
circumference C, i.e. K(s + C) = K(s). This equation is called Hill’s equation; our
Eqs. (4) and (6) belong to this type.



A Constant Focusing

Consider first the simple special case of K = const. For K > 0, we can take the
cosine trajectory,

C(s) = cos
√
Ks ,

{ C(0) = 1
C′(0) = 0

and the sine trajectory,

S(s) = sin
√
Ks ,

{ S(0) = 0
S ′(0) = 1

as a complete set of two linearly independent particular solutions of Hill’s equation, Eq.
(13), which yields simple harmonic oscillations in this special case.

For K < 0, we should replace the above solutions by the respective hyperbolic func-
tions,

C(s) = cosh
√−Ks ,

{ C(0) = 1
C′(0) = 0

, S(s) = sinh
√−Ks ,

{ S(0) = 0
S ′(0) = 1

,

and this motion is locally unstable, the deviations from the design orbit grow exponen-
tially.

The chosen set of solutions provides for convenient expression of the general solution
to Eq. (13), with given initial displacement x0 and initial slope x′0 of a trajectory in the
matrix form, (

x(s)
x′(s)

)
=

( C(s) S(s)
C′(s) S ′(s)

)(
x0

x′0

)
≡ T

(
x0

x′0

)
. (14)

Here matrix T is called the transfer matrix, and we see that transport of a trajectory
specified by its initial conditions is just a linear transformation.

B Alternating-Gradient Focusing

Since Hill’s equation is a second-order linear equation, its general solution in the form
given by Eq. (14) holds for arbitrary K(s) �= const. In this case the cosine and sine tra-
jectories are to be found first, by solving the differential equation with the appropriate ini-
tial conditions. In practice, we can recommend approximation ofK(s) by step functions,
to whatever detail needed, as shown in Fig. 3, then using solutions with K(s) = const
at each interval.

When these intervals are concatenated, the continuity of the solution x(s) (and of the
trajectory slope x′(s)) is preserved by multiplication of the respective transfer matrices:

(
x(s)
x′(s)

)
= T3(s|s2)

(
T2(s2|s1)

(
T1(s1|s0)

(
x0

x′0

)))
= T3(s)T2T1

(
x0

x′0

)
.
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FIGURE 3. Approximation of K(s) by step functions.

The resulting transfer matrix of an arbitrary focusing system is thus available,

T (s|s0) = . . . T3T2T1 =

(
C(s) S(s)
C′(s) S ′(s)

)
. (15)

For any T , detT = const, being the Wronskian of Hill’s equation. Our specific choice
of the initial conditions provides for detT = 1.

C One-Period Matrix M(s) and Stability

Now we introduce the one-period transfer matrix M(s),

M(s) = T (s+ C|s), (16)

which transports the solution forward by one period, see Fig. 4.

s0
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s
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FIGURE 4. Transformation by a one-period matrix M(s0).

For stable motion, we should have limited values of x and x′ when applying M re-
peatedly to any initial condition. Transport over N periods is given by MN , therefore
stability requires that eigenvalues λ of M must be limited, |λ| ≤ 1. Otherwise, with
|λ| > 1, λN means a possibility of unlimited growth of displacements.

Rewriting M via its matrix elements,

M =

(
m11 m12

m21 m22

)
,



we find the eigenvalues of M from the characteristic equation

det(M − λI) = 0,

or, explicitly, ∣∣∣∣∣ m11 − λ m12

m21 m22 − λ

∣∣∣∣∣ = λ2 − (m11 +m22)λ+ detM = 0.

Using detM = 1 and denoting the trace ofM , m11+m22 = trM , we solve this equation
for λ,

λ1,2 =
1

2
trM ± i

√
1 −

(
1

2
trM

)2

≡ cosμ± i sinμ = e±iμ, (17)

where cosμ = 1
2
trM . From detM = 1 we immediately have λ1λ2 = 1, which means

that assuming |λ1| < 1 we would have |λ2| > 1, i.e. growing displacements become
possible with certain initial conditions. Thus, the stability condition |λ| ≤ 1 is reduced
to |λ| = 1 only.

In other words, Imμ = 0 in Eq. (17), or |cosμ| ≤ 1. Finally, the stability condition
can be expressed in terms of matrix M ,

−2 ≤ trM ≤ 2 . (18)

Stable solutions of Hill’s equation are called betatron oscillations, and the meaning of
parameter μ is the phase advance of these oscillations over one period of the focusing
structure.

D Twiss Parametrization

The one-period matrix M may be conveniently represented via the identity matrix I
and the zero-trace matrix J , trJ = 0, composed of the so-called Twiss parameters,1

M = I cosμ+ J sin μ =

(
cosμ+ α sin μ β sin μ

−γ sinμ cosμ− α sin μ

)
. (19)

Among the matrix elements of J ,

J =

(
α β
−γ −α

)
, (20)

there are only two independent parameters, since the relation detM = 1 bounds these
matrix elements, γβ − α2 = 1, or det J = 1. Hence, J2 = −I , and the matrix exponent
form of M follows, M = exp(μJ).

1) Conventionally denoted as β, γ, the Twiss parameters should not be confused with the relativistic
factors.



The matrix elements of M(s) are apparently periodic functions of s, M(s + C) =
M(s), and so are the Twiss functions β(s), α(s) and γ(s).

Provided M(s0) is known, transformation to another point s is given by the transfer
matrix T (s|s0), see Fig. 4,

M(s) = T M(s0)T
−1. (21)

Exercise. Proof of transformation (21) is left to the reader as an exercise.
Exercise. Prove that parameter μ does not depend on s.
This transformation of M is in fact a linear transformation of its matrix elements,

therefore a linear transformation of the Twiss functions from s0 to s. Sometimes it is
convenient to represent this transformation by a 3 × 3 matrix, called Steffen’s matrix,
acting on a 3-vector (β, α, γ),⎛

⎜⎝ β(s)
α(s)
γ(s)

⎞
⎟⎠ =

⎛
⎜⎝ t211 −2t11t12 t212

−t11t21 t11t22 + t12t21 −t12t22
t221 −2t21t22 t222

⎞
⎟⎠
⎛
⎜⎝ β0

α0

γ0

⎞
⎟⎠ , (22)

where tik are the matrix elements of T (s|s0).
Exercise. Derive the elements of Steffen’s matrix from Eq. (21).
Next we need to derive differential equations for the Twiss parameters. First define

matrix D,

D =

(
0 1

−K 0

)
, (23)

which contains the focusing functionK and serves for rewriting Hill’s equation in matrix
form,

X ′ =
d

ds

(
x
x′

)
=

(
0 1

−K 0

)(
x
x′

)
= DX . (24)

The differential equation for the transfer matrix T has the same form. Indeed,

d

ds
T =

( C′ S ′

C′′ S ′′

)
=

( C′ S ′

−KC −KS
)

=

(
0 1

−K 0

)( C S
C′ S ′

)
,

or

T ′ = DT . (25)

However, the differential equation for a one-period matrix M(s) = T (s + C|s) is quite
different. To derive it, we start from Eq. (21),

M = M(s) = T M0T
−1,

rewrite it as
M T = T M0 ,



and differentiate with respect to s,

M ′ T +M T ′ = T ′M0 .

Hence, using Eq. (25), we get

M ′ T +MDT = DTM0 .

Multiplying on the right by T−1, and using Eq. (21), we obtain

M ′ +MD = DTM0T
−1 = DM ,

or, finally,

M ′ = DM −MD . (26)

Substituting here the Twiss form of M , Eq. (19), we find a set of differential equations
for the Twiss functions,

β ′ = −2α ,

α′ = Kβ − γ ,

γ′ = 2Kα . (27)

Elimination of α and substitution of γ = (1+α2)/β yields a rather cumbersome equation
for the β-function alone,

1

2
ββ ′′ − 1

4
β ′2 +Kβ2 = 1 . (28)

Note that these equations should be solved with periodic boundary conditions, since the
Twiss functions are periodic.

Fortunately, equations for some more convenient functions,w(s) =
√
β(s), look much

better. Substituting

β = w2, α = −β ′/2 = −ww′, γ = w′2 +
1

w2
, (29)

into α′ = Kβ − γ in Eq. (27),

−(ww′)′ = −ww′′ − w′2 = Kw2 − w′2 − 1

w2
,

we get a nice equation for w,

w′′ +Kw =
1

w3
, (30)

again with periodic boundary conditions.
Exercise. Show that the general solution of Eq. (30) in a focusing-free section (K = 0)

has the form

w(s) =

√
β0 +

(s− s0)2

β0

,

s0 and β0 being the constants of integration. What is their meaning?
Exercise. Find the general solution of Eq. (30) in a constant-focusing section (K =

const). Compare the result with that given by the transformation (22).



E Eigenvectors of M(s)

Now we find the eigenvectors F T = (f, f ′) of the one-period matrix M(s), using its
Twiss form Eq. (19) and knowing its eigenvalues λ1,2 = e±iμ. From MF = e±iμF ,(

cosμ+ α sin μ β sinμ
−γ sinμ cosμ− α sin μ

)(
f±
f ′
±

)
= e±iμ

(
f±
f ′
±

)
,

we have

f ′
±
f±

=
±i− α

β
. (31)

Note that the eigenvector components are functions of s and obey Hill’s equation, Eq.
(13). Substituting α = −β ′/2 from Eq. (27) on the right side of Eq. (31), we obtain
an expression of the eigenvector components via the Twiss parameters, in the form of a
differential equation,

f ′
±
f±

=
β ′

2β
± i

β
.

Integration yields a fundamental relation of the eigenvector to the β-function,

f±(s) = f0

√
β(s) exp

[
±i
∫ s ds′

β(s′)

]
, (32)

where f0 is the integration constant. Using freedom of normalization, we choose f0 = 1
and get the complex-conjugate pair of eigenvectors, substituting Eq. (32) into Eq. (31),(

β
±i− α

)
e±iψ√
β
, ψ =

∫ s ds′

β(s′)
. (33)

Note that the initial phase in Eq. (33) is still left a free parameter. Using Eqs. (29), we
can also write this complex-conjugate pair of normalized eigenvectors F, F ∗ in terms of
w and w′,

F =

(
f
f ′

)
=

(
w

w′ + i/w

)
eiψ, ψ′ =

1

w2
. (34)

F The Floquet Theorem

Theorem. For Hill’s equation

x′′ +K(s) x = 0

where the focusing function is periodic, K(s+C) = K(s), there exist normal solutions
f(s),

f ′′ +K(s) f = 0 ,



for which advance by one period means multiplication by a phase factor,

f(s+ C) = eiμf(s) .

Indeed, the above constructed eigenvectors of M , with f(s) = w(s)eiψ(s), whose ab-
solute value is a periodic function, are transformed by M when advanced by one period,
and this transformation is reduced to multiplication by the eigenvalue eiμ of M ,(

f
f ′

)
s+C

= M

(
f
f ′

)
s

= eiμ
(
f
f ′

)
s

.

Moreover, the phase advance is related to the amplitude function w,

ψ(s+ C) − ψ(s) = μ =
∮
dψ =

∮
ds

w2
. (35)

These normal solutions f(s) = w(s)eiψ(s) are often called Floquet functions. We will
call F T = (f, f ′), given by Eq. (34), the Floquet vector. Together with its complex con-
jugate, they form a complete basis. Any solution of Hill’s equation can be decomposed
in this basis, (

x
x′

)
=
A

2

(
f
f ′

)
+
A∗

2

(
f ∗

f ∗′

)
= Re[AF ] . (36)

Using the normalization condition in the Wronskian form,∣∣∣∣∣ f f ∗

f ′ f ∗′

∣∣∣∣∣ = eiψe−iψ
∣∣∣∣∣ w w
w′ + i/w w′ − i/w

∣∣∣∣∣ = −2i , (37)

we rewrite the determinant as a skew-scalar product with the help of matrix S,

S =

(
0 1
−1 0

)
. (38)

Then ∣∣∣∣∣ f f ∗

f ′ f ∗′

∣∣∣∣∣ =
(
f, f ′

)( 0 1
−1 0

)(
f ∗

f ∗′

)
= F TS F ∗ = −2i , (39)

while F TS F = 0. These relations help to find the decomposition constant A in Eq. (36)
where multiplication on the left by F ∗TS yields:

A =
1

i
F ∗TS X = −ie−iψ

∣∣∣∣∣ w x
w′ − i/w x′

∣∣∣∣∣ . (40)

From the fact that A is a constant determined by the initial conditions of the trajectory,
follows the Courant-Snyder invariant,

|A|2 = (wx′ − w′x)2 +
x2

w2
= γx2 + 2αxx′ + βx′2 ≡ ε. (41)

When the solution x(s) is propagated in an AG focusing lattice, the quadratic form re-
mains constant because of appropriate variation of the Twiss functions. The physical
meaning of this invariant is that it is proportional to the action variable in the particle
motion.



G Pseudo-Harmonic Oscillations

From Eq. (36), using Eqs. (33) and (41), we arrive at the pseudo-harmonic form of
the solutions to Hill’s equation,

x(s) =
√
εβ(s) cosψ(s) , (42)

x′(s) = −
√

ε

β(s)

(
sinψ(s) + α(s) cosψ(s)

)
. (43)

Exercise. Derive Eq. (43) from Eq. (42) by differentiation, using the relation

ψ(s) =
∫ s ds′

β(s′)
.

Exercise. Find the betatron oscillation tune Q,

Q =
μ

2π
=
∮

ds

β(s)
.

Exercise. Show by straightforward substitution that the solution given by Eq. (42)
satisfies Hill’s equation, Eq. (13).

εβ

ε/β
εγ

x

x’

πεArea =

1

23

4

FIGURE 5. Elliptic phase-space trajectory of the betatron oscillation.

Figure 5 shows the phase space of the betatron oscillation, illustrating the meaning of
the Twiss parameters. The Courant-Snyder quadratic form, Eq. (41), defines the ellipse
with area πε. Being a locus of points 1, 2, ... representing one-period mapping, the
ellipse is often called a phase-space trajectory of the betatron oscillation. From Fig. 5
and Eq. (42) we conclude that w(s) =

√
β(s) is the envelope function enclosing all

betatron trajectories with given |A|.
The pseudo-harmonic oscillation is related to the simple harmonic oscillation by a

linear transformation, following from Eqs. (42) and (43),



(
x
x′

)
=

( √
β 0

−α/√β 1/
√
β

)( √
ε cosψ

−√
ε sinψ

)
. (44)

and by the change of independent variable from s to ψ. The new variables are called the
normalized variables.

H Perturbation of Hill’s Equation

Let us add to the nominal Hill equation, Eq. (13), an additional term g(x, s) on the
right side,

x′′ +K(s) x = g(x, s), (45)

or, in matrix form,

d

ds

(
x
x′

)
=

(
0 1

−K 0

)(
x
x′

)
+

(
0
g

)

or,

X ′ = DX +G . (46)

The solution may be sought in the same form, Eq. (36), as before, since the nominal
Floquet vectors provide for a complete basis. However, the amplitude A is no longer
constant. Differentiating Eq. (40) for the amplitude A,

A′ =
1

i
(F ∗′)TS X +

1

i
F ∗TS X ′

using Eq. (46) for X ′ and the nominal Hill equation, Eq. (13), for the Floquet vectors,
F ∗′ = DF ∗, we have

A′ =
1

i
F ∗T ((DT S + S D

)
X + S G

)
.

Since DTS + SD = 0, we finally get the equation for the variation of A caused by the
perturbation

A′ = −i F ∗TS G . (47)

Putting A = |A| eiφ, where both the absolute value and the phase of A are variable
because of perturbation on the right side of Hill’s equation, Eq. (45), we rewrite Eq. (47)
as

|A|′ + iφ′ |A| = −ie−i(ψ+φ)
√
βg(x, s) , (48)

where on the right side we should put x = |A| √β cos(ψ + φ), in order to complete
the change of variables from x, x′ to the complex amplitude A = |A| eiφ. Note that no
assumptions have been made about the smallness of g(x, s), and Eqs. (47) and (48) are
exact equations.



IV APPLICATION OF THE FLOQUET FORMALISM

Below we present a number of problems in linear and nonlinear transverse dynamics,
which are solved by means of the Floquet formalism, to illustrate its efficiency.

A Transfer Matrix in Terms of Twiss Parameters

Problem. Consider a section of a circular accelerator lattice with specified values of
the Twiss parameters on its entrance and exit, i.e. βi, αi and βf , αf , respectively. Find
the transfer matrix T of the section.

To solve this problem, we write the transformation of the Floquet vector performed by
this optics,

T

(
f
f ′

)
i

= eiφ
(
f
f ′

)
f

, (49)

where the arbitrary phase factor follows from freedom in the eigenvector normalization,
see Eq. (33). The meaning of φ is the betatron oscillation phase advance provided by
this optics; it is a free parameter.

Introducing wi,f =
√
βi,f and w′

i,f = −αi,f/wi,f , we compose matrixW from column
Floquet vectors,

W =

(
w w

w′ + i/w w′ − i/w

)
,

then from Eq. (49) we obtain a matrix equation for unknown T ,

T Wi = Wf

(
eiφ 0
0 e−iφ

)
.

The solution is

T (f |i) = Wf

(
eiφ 0
0 e−iφ

)
W−1
i .

Calculation of the right side yields, for the matrix elements of T (f |i),

T (f |i) =

(
t11 t12
t21 t22

)
,

t11 =
wf
wi

(cosφ− wiw
′
i sinφ) =

√
βf
βi

(cosφ+ αi sin φ),

t12 = wfwi sin φ =
√
βfβi sinφ,

t21 = (
w′
f

wi
− w′

i

wf
) cosφ− (w′

fw
′
i+

1

wfwi
) sinφ

= − 1√
βfβi

((αf − αi) cosφ+ (1 + αfαi) sinφ) ,



t22 =
wi
wf

(cosφ+ wfw
′
f sin φ) =

√√√√ βi
βf

(cosφ− αf sin φ),

where i, f indicate the entrance and exit of the optical section.

B Propagation of Mismatched β-Function

Problem. At injection, s = 0, initial βi and β ′
i are mismatched with the nominal values

β0 and β ′
0 of the lattice. Trace β(s) along the lattice.

Using the initial Twiss parameters, we construct the initial Floquet vector,

Fi =

(
wi

w′
i + i/wi

)
,

and decompose Fi in the Floquet basis with the nominal w0 and w′
0,

Fi = c1F0 + c∗2F
∗
0 , F0 =

(
w0

w′
0 + i/w0

)
. (50)

To find the constants, we multiply this decomposition on the left by F ∗T . Then, using
the normalization relations, see Eqs. (37) and (39),

F ∗TS F = −(F TS F ∗)T = (F TS F ∗)∗ = 2i,

F TS F = F ∗TS F ∗ = 0,

we obtain for the decomposition constants,

c1 =
1

2i
F ∗T

0 S Fi , c2 =
1

2i
F ∗T

0 S F ∗
i .

Decomposition (50) holds for any s downstream of the injection point at s = 0. Propaga-
tion of this initial Floquet vector is then determined by known functions of the nominal
lattice, w0(s) and ψ0(s):

(
w(s)

w′(s) + i
w(s)

)
eiψ(s) = c1

(
w0(s)

w′
0(s) + i

w0(s)

)
eiψ0(s) + c∗2

(
w0(s)

w′
0(s) − i

w0(s)

)
e−iψ0(s),

where ψ(0) = ψ0(0) = 0. The mismatched β-function is

β(s) = w2
0(s)

∣∣∣c1eiψ0(s) + c∗2e
−iψ0(s)

∣∣∣2 = β0(s)
(
|c1|2 + |c2|2 + 2Re

[
c1c2e

2iψ0(s)
])
.

A cos(2ψ0(s)+ϕ) term emerges from the right side, indicating the beat of the β-function
at twice the betatron tune.



C Amplitude-Dependent Tuneshift

Problem. Consider now a nonlinear perturbation g(x, s) = qm(s)xm on the right side
of Hill’s equation, Eq. (45). Find the resulting correction to the betatron tune.

To solve this problem, we put g(x, s) = qm(s)xm in Eq. (48) for the complex ampli-
tude A = |A| eiφ,

|A|′ + iφ′ |A| = −ie−i(ψ+φ)
√
βqm(s)xm. (51)

The periodic function qm(s) here can be represented by its Fourier series. From Eq. (51)
we see that the phase φ obeys the equation

φ′ = − qm
|A|x

m
√
β cos(ψ + φ),

where we should substitute x = |A| √β cos(ψ + φ),

φ′ = −qm |A|m−1 β(m+1)/2 cosm+1(ψ + φ) . (52)

The average of the right side over fast oscillations2 is non-vanishing for odd m. The
phase φ on the right side may be kept constant while averaging, if the perturbation is
small (which means that φ′ is also small).

Starting with the case of perturbation of linear focusing,m = 1, we get from Eq. (52),
after averaging,

φ′ = −1

2
q1(s)β(s) .

Integration of φ′ over the orbit circumference yields contribution Δμ to the phase ad-
vance μ from the perturbation. Thus we can obtain the betatron tuneshift from additional
focusing,

ΔQ =
Δμ

2π
=

1

2π

∮
φ′ds = − 1

4π

∮
q1(s)β(s) ds.

For the cubic nonlinearity m = 3, averaging of the right side of Eq. (52) results in

cos4(ψ + φ) =
3

8
. (53)

Integration of φ′ given by Eq. (52) with m = 3 yields the tuneshift

ΔQ =
Δμ

2π
=

1

2π

∮
φ′ds = −3 |A|2

16π

∮
q3(s)β

2(s)ds ,

where use has been made of Eq. (53). The found amplitude-dependent tuneshift is due
to nonlinearity of the betatron motion, and the Twiss β-function squared is the weight
function of the cubic perturbation. For mth-order nonlinearity the weight function will
be β(m+1)/2.

2) The averaging is performed with the assumption that the betatron tune stays well apart from (higher-
order) resonances.



D Dynamic Aperture Limitation by a Single Nonlinear Kick

Consider a nonlinear one-period map formed by a linear optics section, with a betatron
phase advance of 2πQ, followed by a thin nonlinear element which can be treated in the
kick approximation. A fixed point of this map (other than x = 0, x′ = 0) is the location in
the phase space of the system, where the onset of stochasticity occurs. Thus the position
of the fixed point(s) may provide a rough estimate of the available dynamic aperture, i.e.
the phase space area around the origin where the regularity of motion is preserved.

Problem. Taking an example with a single sextupole kick k2x
2, as shown in Fig. 6,

find the position of the period-one fixed point. In other words, the fixed point gives initial
conditions for a special trajectory, i.e. the periodic one, to be found here.

ar

ar

b)

x’

x

1/2

1/2

0 C/2 C s

x

a)

{Q}>

{Q}<

2
2k x 2

2k x

FIGURE 6. a) Periodic trajectories corresponding to the period-one fixed points of the nonlinear trans-

formation; b) phase-space trajectory crossing the period-one fixed point ar.

It is convenient to work in the normalized betatron variables, Eq. (44). We write the
equation of the periodic trajectory on the right side of the kick, for s > 0,

x = a cos(ψ − πQ) ,

x′ = −a sin(ψ − πQ) ,

and on the left side, for s < 0,

x = a cos(ψ + πQ) ,

x′ = −a sin(ψ + πQ) .

Continuity of x at s = 0 is provided by the form of these expressions. The slope x′ is
changed by the kick,

x′|+0 − x′|−0 = 2ar sin πQ = k2x
2
r = k2a

2
r cos2 πQ ,

and this equation determines the position ar of the fixed point,

ar =
2 sin πQ

k2 cos2 πQ
.



The solution is markedly tune-dependent, and the neighborhood of the integer resonance
should be avoided. Turning from the normalized variables back to normal ones, we see
from Eq. (44) that the strength k2 of the sextupole kick scales as β3/2, where β is the
value of the β-function at the kick location. Therefore, the dynamic aperture scales as
β−3/2.

V CONCLUSION

A versatile formalism is available (in different forms) to fully support linear lattice
analysis and to simplify the formulation of nonlinear dynamics problems.
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